【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)設(shè)點(diǎn),為曲線上的動(dòng)點(diǎn),求的面積的最大值.
【答案】(1),;(2).
【解析】
(1)在直線的參數(shù)方程中消去,可得出直線的普通方程,由可將曲線的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn),求出直線的普通方程,利用點(diǎn)到直線的距離公式結(jié)合三角恒等變換思想以及正弦函數(shù)的有界性可求得點(diǎn)到直線距離的最大值,進(jìn)而可求得面積的最大值.
(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)得,
所以,直線的普通方程為.
曲線的極坐標(biāo)方程是,即,
化為普通方程得,即,即.
因此,曲線的直角坐標(biāo)方程為;
(2)點(diǎn),所以的直線方程為.
點(diǎn)為上任意一點(diǎn),設(shè)點(diǎn)的坐標(biāo)為,
所以點(diǎn)到直線的距離,其中由,來(lái)確定.
當(dāng)時(shí),,
所以面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是________(寫出所有正確命題的編號(hào))
①命題“若,則且”的否定是“若,則且”
②已知函數(shù)的圖象關(guān)于直線對(duì)稱,函數(shù)為奇函數(shù),則4是一個(gè)周期.
③平面,,過(guò)內(nèi)一點(diǎn)作的垂線,則.
④在中角所對(duì)的邊分別為,若,則成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種拋硬幣游戲的規(guī)則是:拋擲一枚硬幣,每次正面向上得1分,反面向上得2分.
(1)設(shè)拋擲5次的得分為,求的分布列和數(shù)學(xué)期望;
(2)求恰好得到分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問(wèn)求得的回歸方程知為多少時(shí),燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.“”是“”的充分不必要條件
B.若為假命題,則,均為真命題
C.命題“若,則”的逆否命題是“若,則|”
D.若命題,使得,則,恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)有位學(xué)生申請(qǐng)、、三所大學(xué)的自主招生.若每位學(xué)生只能申請(qǐng)其中一所大學(xué),且申請(qǐng)其中任何一所大學(xué)是等可能的.
(1)求恰有人申請(qǐng)大學(xué)的概率;
(2)求被申請(qǐng)大學(xué)的個(gè)數(shù)的概率分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為=(>0),過(guò)點(diǎn)的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).定義點(diǎn)的“友好點(diǎn)”為:,現(xiàn)有下列命題:
①若點(diǎn)的“友好點(diǎn)”是點(diǎn),則點(diǎn)的“友好點(diǎn)”一定是點(diǎn).
②單位圓上的點(diǎn)的“友好點(diǎn)”一定在單位圓上.
③若點(diǎn)的“友好點(diǎn)”還是點(diǎn),則點(diǎn)一定在單位圓上.
④對(duì)任意點(diǎn),它的“友好點(diǎn)”是點(diǎn),則 的取值集合是 .
其中的真命題是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對(duì)任意x,x,xx,有。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com