【題目】如圖,矩形CDEF和梯形ABCD互相垂直,,,

1)若中點(diǎn),求證:∥平面;

2)求平面與平面所成銳二面角的大小.

【答案】1)證明見(jiàn)解析(2

【解析】

1)設(shè)交于點(diǎn),連結(jié),在矩形,點(diǎn)中點(diǎn),求證,即可求得答案;

2)以為坐標(biāo)原點(diǎn), 其中、、分別為、、軸建立空間直角坐標(biāo)系,

求出平面的法向量和平面的法向量,根據(jù),即可求得答案.

1)設(shè)交于點(diǎn),連結(jié),在矩形,點(diǎn)中點(diǎn),

如圖:

中點(diǎn),

平面,平面

∥平面

2平面平面,平面平面,

平面,,

平面,

為坐標(biāo)原點(diǎn), 其中、分別為、、軸建立空間直角坐標(biāo)系,

如圖:

設(shè),,,,,,

可得:,,,

,

,,

設(shè)平面的法向量,

可得得到的一個(gè)解為,

注意到平面的法向量,

,

平面所成銳二面角的大小為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),右焦點(diǎn)是拋物線的焦點(diǎn).

(1)求橢圓的方程;

(2)已知?jiǎng)又本過(guò)右焦點(diǎn),且與橢圓分別交于兩點(diǎn).試問(wèn)軸上是否存在定點(diǎn),使得恒成立?若存在求出點(diǎn)的坐標(biāo):若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱柱中,,,平面,.

(1)證明:.

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)設(shè),若對(duì)于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過(guò)購(gòu)機(jī)時(shí)購(gòu)買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無(wú)需支付小費(fèi).現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買10次維修服務(wù),或每臺(tái)都購(gòu)買11次維修服務(wù),分別計(jì)算這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買10次還是11次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在四棱錐中,,,的中點(diǎn),是等邊三角形,平面平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】地球海洋面積遠(yuǎn)遠(yuǎn)大于陸地面積,隨著社會(huì)的發(fā)展,科技的進(jìn)步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟(jì)利益,還擁有著深遠(yuǎn)的政治利益.聯(lián)合國(guó)于第63屆聯(lián)合國(guó)大會(huì)上將每年的68日確定為“世界海洋日”.201968日,某大學(xué)的行政主管部門(mén)從該大學(xué)隨機(jī)抽取100名大學(xué)生進(jìn)行一次海洋知識(shí)測(cè)試,并按測(cè)試成績(jī)(單位:分)分組如下:第一組[65,70),第二組[70,75),第二組[7580),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:

1)求實(shí)數(shù)的值;

2)若從第四組、第五組的學(xué)生中按組用分層抽樣的方法抽取6名學(xué)生組成中國(guó)海洋實(shí)地考察小隊(duì),出發(fā)前,用簡(jiǎn)單隨機(jī)抽樣方法從6人中抽取2人作為正、副隊(duì)長(zhǎng),列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)與雙曲線的焦點(diǎn)重合,并且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(II) 設(shè)橢圓C短軸的上頂點(diǎn)為P,直線不經(jīng)過(guò)P點(diǎn)且與相交于、兩點(diǎn),若直線PA與直線PB的斜率的和為,判斷直線是否過(guò)定點(diǎn),若是,求出這個(gè)定點(diǎn),否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,離心率為,短軸長(zhǎng)為2.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),過(guò)橢圓左焦點(diǎn)的直線兩點(diǎn),若對(duì)滿足條件的任意直線,不等式恒成立,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案