X | X1 | X2 | X3 | … | Xn |
P | p1 | p2 | p3 | … | pn |
分析 (Ⅰ)先求出n=4,由此能求出隨機變量X的分布列和期望.
(Ⅱ)隨機抽取一次取得標簽的標號不小于3的概率為$\frac{1}{12}$+$\frac{1}{20}$=$\frac{2}{15}$,由此能求出恰好2次取得標簽的標號小于3的概率.
解答 (本題滿分13分)
解:(Ⅰ)由題意知 $\sum_{i=1}^n{P(X=i)=}\frac{7}{10}+\sum_{i=2}^n{\frac{1}{i(i+1)}}=\frac{7}{10}+\frac{1}{2}-\frac{1}{n+1}=1$,
解得n=4,
∴隨機變量X的分布列為:
X | 1 | 2 | 3 | 4 |
P | $\frac{7}{10}$ | $\frac{1}{6}$ | $\frac{1}{12}$ | $\frac{1}{20}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列、數(shù)學期望的求法,是中檔題,解題時要認真審題,在歷年高考中都是必考題型之一.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{{2\sqrt{3}π}}{3}$ | D. | $\frac{{2\sqrt{3}π}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com