【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=(  )

A.a+b
B.a﹣2b
C.a﹣b
D.3a

【答案】D
【解析】解:觀察函數(shù)圖象,發(fā)現(xiàn):
圖象過原點,c=0;
拋物線開口向上,a>0;
拋物線的對稱軸0<﹣ <1,﹣2a<b<0.
∴|a﹣b+c|=a﹣b,|2a+b|=2a+b,
∴|a﹣b+c|+|2a+b|=a﹣b+2a+b=3a.
故選D.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別為圓, 上一點, ,且

(1)求橢圓的方程;

(2)當(dāng)過點的動直線與橢圓相交于不同兩點時,線段上取點,且滿足,證明點總在某定直線上,并求出該定直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且滿足.

(1)求角B的大小;

(2)若點MBC中點,且AM=AC=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,底面是邊長為的正方形,四邊形是矩形,平面平面, , 分別是的中點.

Ⅰ)求證: 平面

Ⅱ)求證:平面平面

Ⅲ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是(  )
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

(Ⅰ)已知,證明: ;

(Ⅱ)若對任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面底面,,,且,點,,分別為,,的中點.

(Ⅰ)求證:平面

(Ⅱ)求證:平面

(Ⅲ)寫出四棱錐的體積.(只寫出結(jié)論,不需要說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小麗今天晚自習(xí)準(zhǔn)備復(fù)習(xí)歷史、地理或政治中的一科,她用數(shù)學(xué)游戲的結(jié)果來決定選哪一科,游戲規(guī)則是:在平面直角坐標(biāo)系中,以原點為起點,再分別以 , , , 這5個點為終點,得到5個向量,任取其中兩個向量,計算這兩個向量的數(shù)量積,若,就復(fù)習(xí)歷史,若,就復(fù)習(xí)地理,若,就復(fù)習(xí)政治.

(1)寫出的所有可能取值;

(2)求小麗復(fù)習(xí)歷史的概率和復(fù)習(xí)地理的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________

查看答案和解析>>

同步練習(xí)冊答案