設(shè)點F(0,),動圓P經(jīng)過點F且和直線y=相切,記動圓的圓心P的軌跡為曲線W.
⑴求曲線W的方程;⑵過點F作相互垂直的直線,,分別交曲線W于A,B和C,D.①求四邊形ABCD面積的最小值;②分別在A,B兩點作曲線W的切線,這兩條切線的交點記為Q,求證:QA⊥QB,且點Q在某一定直線上。
(1);(2).
本試題主要是考查直線與圓的位置關(guān)系,以及拋物線方程的求解,和三角形面積的計算。
解:⑴由切線性質(zhì)及拋物線定義知W的方程:
⑵①設(shè)方程:,方程:,由弦長公式易知:四邊形ABCD的面積S==18≥72,K=±1時,.
②由⑴知W的方程為:,故,則:QA⊥QB.聯(lián)立方程得交點Q即Q,當(dāng)k取任何非零實數(shù)時,點Q總在定直線上。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右頂點為,過的焦點且垂直長軸的弦長為

(I)求橢圓的方程;
(II)設(shè)拋物線的焦點為F,過F點的直線交拋物線與A、B兩點,過A、B兩點分別作拋物線的切線交于Q點,且Q點在橢圓上,求面積的最值,并求出取得最值時的拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點,過的直線與E相交于A、B兩點,且,成等差數(shù)列。
(1)求的周長
(2)求的長                       
(3)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓 )的一個頂點為,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線  與橢圓 交于 , 兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線),焦點為,直線 交拋物線兩點,是線段的中點,過軸的垂線交拋物線于點,
(1)若拋物線上有一點到焦點的距離為,求此時的值;
(2)是否存在實數(shù),使是以為直角頂點的直角三角形?若存在,求出
的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線的右焦點F,且交橢圓C于A,B兩點.
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)對橢圓C,若直線L交y軸于點M,且,當(dāng)m變化時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知以為焦點的拋物線上的兩點滿足,則弦的中點到準(zhǔn)線的距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)
如圖,設(shè)拋物線的準(zhǔn)線與x軸交于F1,焦點為F2;以F1,F(xiàn)2為焦點,離心率的橢圓C2與拋物線C1在x軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運動。
(1)當(dāng)m=1時,求橢圓C2的方程;
(2)當(dāng)的邊長恰好是三個連續(xù)的自然數(shù)時,求面積的最大值。

查看答案和解析>>

同步練習(xí)冊答案