【題目】設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13. (Ⅰ)求{an}、{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列 的前n項(xiàng)和Sn .
【答案】解:(Ⅰ)設(shè){an}的公差為d,{bn}的公比為q,則依題意有q>0且 解得d=2,q=2.
所以an=1+(n﹣1)d=2n﹣1,bn=qn﹣1=2n﹣1 .
(Ⅱ) ,
,①
Sn= ,②
① ﹣②得 Sn=1+2( + +…+ )﹣ ,
則 = = = .
【解析】(Ⅰ)設(shè){an}的公差為d,{bn}的公比為q,根據(jù)等比數(shù)列和等差數(shù)列的通項(xiàng)公式,聯(lián)立方程求得d和q,進(jìn)而可得{an}、{bn}的通項(xiàng)公式.(Ⅱ)數(shù)列 的通項(xiàng)公式由等差和等比數(shù)列構(gòu)成,進(jìn)而可用錯(cuò)位相減法求得前n項(xiàng)和Sn .
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:或;通項(xiàng)公式:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 是 的導(dǎo)函數(shù), 為自然對(duì)數(shù)的底數(shù).
(1)討論 的單調(diào)性;
(2)當(dāng) 時(shí),證明: ;
(3)當(dāng) 時(shí),判斷函數(shù) 零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)a,b滿足a+2b=9.
(1)若|9﹣2b|+|a+1|<3,求a的取值范圍;
(2)若a,b>0,且z=ab2 , 求z的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等比數(shù)列,a1=1,a4=27; Sn為等差數(shù)列{bn} 的前n 項(xiàng)和,b1=3,S5=35.
(1)求{an}和{bn} 的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn} 滿足cn=anbn(n∈N*),求數(shù)列{cn} 的前n 項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x﹣1|(m∈R) (I)當(dāng)m=﹣1時(shí),求不等式f(x)≤2的解集;
(II)設(shè)關(guān)于x的不等式f(x)≤|2x+1|的解集為A,且[ ,2]A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的莖葉圖(圖一)為高三某班50名學(xué)生的化學(xué)考試成績(jī),圖(二)的算法框圖中輸入的ai為莖葉圖中的學(xué)生成績(jī),則輸出的m,n分別是( )
A.m=38,n=12
B.m=26,n=12
C.m=12,n=12
D.m=24,n=10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解該校高三年級(jí)學(xué)生數(shù)學(xué)科學(xué)習(xí)情況,對(duì)廣一模考試數(shù)學(xué)成績(jī)進(jìn)行分析,從中抽取了n 名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì)(該校全體學(xué)生的成績(jī)均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在[70,90)內(nèi)的所有數(shù)據(jù)的莖葉圖如圖2所示.
根據(jù)上級(jí)統(tǒng)計(jì)劃出預(yù)錄分?jǐn)?shù)線,有下列分?jǐn)?shù)與可能被錄取院校層次對(duì)照表為表( c ).
分?jǐn)?shù) | [50,85] | [85,110] | [110,150] |
可能被錄取院校層次 | ? | 本科 | 重本 |
(1)求n和頻率分布直方圖中的x,y的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級(jí)學(xué)生中任取3 人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和?苾蓚(gè)層次的學(xué)生中隨機(jī)抽取3 名學(xué)生進(jìn)行調(diào)研,用ξ表示所抽取的3 名學(xué)生中為重本的人數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線C:y2=3px(p≥0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過(guò)點(diǎn)(0,2),則C的方程為( )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com