(本小題滿分13分)已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若,在(1,2)上為單調(diào)遞
減函數(shù)。求實數(shù)a的范圍。

(1)函數(shù)的定義域為                           ————1分

 解得:                              ————4分
時,。此時函數(shù)單調(diào)遞減。
時,。此時函數(shù)單調(diào)遞增。         ————6分
(2)                           
由題意可知, 時,恒成立。            ————9分

由(1)可知,                     ————11分
可得
                                        ————13分

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在點處的切線方程為
(I)求的表達式;
(Ⅱ)滿足恒成立,則稱的一個“上界函數(shù)”,如果函數(shù)R)的一個“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當時,討論在區(qū)間(0,2)上極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)設函數(shù)f(x)=x3+ax2-a2x+m(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒有極值點,求a的取值范圍;
(Ⅲ)若對任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億
元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=,Q=t.今該公司將5
億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億
元).求:(1)y關(guān)于x的函數(shù)表達式;
(2)總利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.(本小題滿分12分)
已知以函數(shù)f(x)=mx3-x的圖象上一點N(1,n)為切點的切線傾斜角為.
(1)求m、n的值;
(2)是否存在最小的正整數(shù)k,使得不等式f(x)≤k-1995,對于x∈[-1,3]恒成立?若存在,求出最小的正整數(shù)k,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(l2分)已知函數(shù)為自然對數(shù)的底數(shù)
(I) 當時,求函數(shù)的極值;
(Ⅱ) 若函數(shù)在[-1,1]上單調(diào)遞減,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)已知函數(shù).
(I)若函數(shù)在點處的切線斜率為4,求實數(shù)的值;
(II)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

函數(shù)的部分圖象如圖所示,,則函數(shù)表達式為( )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

="                                                                                        " (   )

A.—6 B.0 C.6 D.3

查看答案和解析>>

同步練習冊答案