某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。
區(qū)間 | |||||
人數(shù) | a | b | | |
(1)人,人,人;(2)第1,2,3組分別抽取1人,1人,4人;
(3)
解析試題分析:(1)利用頻率分布直方圖即可求出;(2)抓住分層抽樣的抽樣比為即可解決問題;
(3)列出從6個人抽取2人的所以情況,然后從中找到滿足條件的情況是多少個,最后利用古典概型公式即可.
試題解析:(1)由頻率分布直方圖可知,與兩組的人數(shù)相同,
所以人. 1分
且人. 2分
總?cè)藬?shù)人. 3分
(2)因為第1,2,3組共有25+25+100=150人,利用分層抽樣在150名員工中抽取人,每組抽取的人數(shù)分別為:
第1組的人數(shù)為, 4分
第2組的人數(shù)為, 5分
第3組的人數(shù)為, 6分
所以第1,2,3組分別抽取1人,1人,4人.7分
(3)由(2)可設(shè)第1組的1人為,第2組的1人為,第3組的4人分別為,則從6人中抽取2人的所有可能結(jié)果為:
,,,,,,,,,,,,,,,
共有種. 9分
其中恰有1人年齡在第3組的所有結(jié)果為:
,,,,,,,,
共有8種. 2分
所以恰有1人年齡在第3組的概率為.12分
考點:(1)頻率分布直方圖;(2)分層抽樣;(3)古典概型.
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測試指標分為:指標大于或等于90為一等品,大于或等于小于為二等品,小于為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標 | ||||||
甲 | 3 | 7 | 20 | 40 | 20 | 10 |
乙 | 5 | 15 | 35 | 35 | 7 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校高一年級60名學(xué)生參加數(shù)學(xué)競賽,成績?nèi)吭?0分至100分之間,現(xiàn)將成績分成以下6段:,據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)求成績在區(qū)間的頻率;
(2)從成績大于等于80分的學(xué)生中隨機選3名學(xué)生,其中成績在[90,100]內(nèi)的學(xué)生人數(shù)為ξ,求ξ的分布列與均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
隨機抽取某中學(xué)高一級學(xué)生的一次數(shù)學(xué)統(tǒng)測成績得到一樣本,其分組區(qū)間和頻數(shù)是:,2;,7;,10;,x;[90,100],2.其頻率分布直方圖受到破壞,可見部分如下圖所示,據(jù)此解答如下問題.
(1)求樣本的人數(shù)及x的值;
(2)估計樣本的眾數(shù),并計算頻率分布直方圖中的矩形的高;
(3)從成績不低于80分的樣本中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對某電子元件進行壽命追蹤調(diào)查,所得樣本數(shù)據(jù)的頻率分布直方圖如下.
(1)求,并根據(jù)圖中的數(shù)據(jù),用分層抽樣的方法抽取個元件,元件壽命落在之間的應(yīng)抽取幾個?
(2)從(1)中抽出的壽命落在之間的元件中任取個元件,求事件“恰好有一個元件壽命落在之間,一個元件壽命落在之間”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h).試驗的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時間:
0.6 | 1.2 | 2.7 | 1.5 | 2.8 | 1.8 | 2.2 | 2.3 | 3.2 | 3.5 |
2.5 | 2.6 | 1.2 | 2.7 | 1.5 | 2.9 | 3.0 | 3.1 | 2.3 | 2.4 |
3.2 | 1.7 | 1.9 | 0.8 | 0.9 | 2.4 | 1.2 | 2.6 | 1.3 | 1.4 |
1.6 | 0.5 | 1.8 | 0.6 | 2.1 | 1.1 | 2.5 | 1.2 | 2.7 | 0.5 |
A藥 | | B藥 |
| 0. 1. 2. 3. | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數(shù)據(jù)如下:(單位:)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在上面給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了解高二某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
(參考公式K2=,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出t該產(chǎn)品獲利潤元,未售出的產(chǎn)品,每t虧損元。根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示。經(jīng)銷商為下一個銷售季度購進了t該農(nóng)產(chǎn)品,以(單位:t,)表示下一個銷售季度內(nèi)的市場需求量,(單位:元)表示下一個銷售季度內(nèi)銷商該農(nóng)產(chǎn)品的利潤。
(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計利潤不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若,則取,且的概率等于需求量落入的概率),求利潤的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com