將正方形ABCD沿對(duì)角線BD折起,使平面ABD⊥平面CBD,E是CD中點(diǎn),則∠AED的大小為( 。
分析:由題意畫(huà)出幾何體的圖形,設(shè)出正方形的邊長(zhǎng),求出折疊后AD,AE,DE的長(zhǎng)度,即可求出∠AED的大。
解答:解:由題意畫(huà)出圖形,如圖,
設(shè)正方形的邊長(zhǎng)為:2,
折疊前后AD=2,DE=1,連接AC交BD于O,連接OE,則OE=1,AO=
2
,
因?yàn)檎叫蜛BCD沿對(duì)角線BD折起,使平面ABD⊥平面CBD,
AO⊥BD,所以AO⊥平面BCD,所以AO⊥OE,
在△AOE中,AE=
AO2+OE2
=
3
,
又AD=2,ED=1,所以DE2+AE2=AD2,
所以∠AED=90°.
故選D.
點(diǎn)評(píng):本題考查折疊問(wèn)題,注意折疊前后,同一個(gè)半平面中的線線關(guān)系不變,考查空間想象能力計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福州一中高三數(shù)學(xué)模擬試卷(一)(文科) 題型:013

邊長(zhǎng)為1的正方形ABCD沿對(duì)其角線BD將△BDC折起得到三棱錐C-ABD,若三棱錐C-ABD的體積為,則直線BC與平面ABD所成角的正弦值為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

同步練習(xí)冊(cè)答案