【題目】已知, ,若,則對(duì)此不等式描敘正
確的是( )
A. 若,則至少存在一個(gè)以為邊長的等邊三角形
B. 若,則對(duì)任意滿足不等式的都存在以為邊長的三角形
C. 若,則對(duì)任意滿足不等式的都存在以為邊長的三角形
D. 若,則對(duì)滿足不等式的不存在以為邊長的直角三角形
【答案】B
【解析】本題可用排除法,由,
對(duì)于,若,可得,故不存在這樣的錯(cuò)誤,排除;對(duì)于時(shí), 成立,而以為邊的三角形不存在, 錯(cuò)誤,排除;對(duì)于 時(shí), 成立,存在以為邊的三角形為直角三角形,故錯(cuò)誤,排除故選B.
【 方法點(diǎn)睛】本題主要考查不等式的性質(zhì)、排除法解選擇題,屬于難題. 用特例代替題設(shè)所給的一般性條件,得出特殊結(jié)論,然后對(duì)各個(gè)選項(xiàng)進(jìn)行檢驗(yàn),從而做出正確的判斷,這種方法叫做特殊法. 若結(jié)果為定值,則可采用此法. 特殊法是“小題小做”的重要策略,排除法解答選擇題是高中數(shù)學(xué)一種常見的解題思路和方法,這種方法即可以提高做題速度和效率,又能提高準(zhǔn)確性,這種方法主要適合下列題型:(1)求值問題(可將選項(xiàng)逐個(gè)驗(yàn)證);(2)求范圍問題(可在選項(xiàng)中取特殊值,逐一排除);(3)圖象問題(可以用函數(shù)性質(zhì)及特殊點(diǎn)排除);(4)解方程、求解析式、求通項(xiàng)、求前 項(xiàng)和公式問題等等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線.
(1)求曲線被直線截得的弦長;
(2)與直線垂直的直線與曲線相切于點(diǎn),求點(diǎn)的直線坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>.
(1)求實(shí)數(shù)的值;
(2)若,求實(shí)數(shù)的值;
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎(jiǎng)促銷活動(dòng),顧客購買一定金額的商品后即可抽獎(jiǎng),抽獎(jiǎng)方法是:從裝有2個(gè)紅球和1個(gè)白球的甲箱與裝有2個(gè)紅球和2個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,若摸出的2個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng).
(Ⅰ)用球的標(biāo)號(hào)列出所有可能的摸出結(jié)果;
(Ⅱ)有人認(rèn)為:兩個(gè)箱子中的紅球比白球多,所以中獎(jiǎng)的概率大于不中獎(jiǎng)的概率,你認(rèn)為正確嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠品牌服裝的年固定成本100萬元,每生產(chǎn)1萬件需另投入27萬元,設(shè)服裝廠一年內(nèi)共生產(chǎn)該品牌服裝萬件并全部銷售完,每萬件的銷售收入為R()萬元.且
(1)寫出年利潤y(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬件時(shí),服裝廠在這一品牌的生產(chǎn)中所獲年利潤最大?(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動(dòng)點(diǎn)P,過P引平行于OB的直線和OA交于點(diǎn)C,設(shè)∠AOP=θ,求△POC面積的最大值及此時(shí)θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:PQ⊥平面DCQ;
(II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線經(jīng)過拋物線的焦點(diǎn),且垂直于拋物線的對(duì)稱軸,與拋物線兩交點(diǎn)間的距離為4.
(1)求拋物線的方程;
(2)已知,過的直線與拋物線相交于兩點(diǎn),設(shè)直線與的斜率分別為和,求證:為定值,并求出定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com