分析 利用已知等式以及平面向量的數(shù)量積得到關(guān)于|$\overrightarrow$|的方程解之.
解答 解:向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{21}$,且$\overrightarrow{a}$與$\overrightarrow$夾角為120°,
所以|$\overrightarrow{a}$-2$\overrightarrow$|2=21,且$\overrightarrow{a}$與$\overrightarrow$夾角為120°,則${\overrightarrow{a}}^{2}+4{\overrightarrow}^{2}-4|\overrightarrow{a}||\overrightarrow|cos120°=21$,整理得$2|\overrightarrow{|}^{2}+|\overrightarrow|-10=0$,解得|$\overrightarrow$|=2;
故答案為:2.
點(diǎn)評 本題考查了平面向量的模長以及數(shù)量積的運(yùn)算;屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要 | B. | 必要非充分 | ||
C. | 充分必要 | D. | 既非充分又非必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2} | B. | {0,1,2,3} | C. | {1,2} | D. | {0,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com