精英家教網 > 高中數學 > 題目詳情

已知函數f(x)是定義在R上的奇函數,其最小正周期為3,且x∈(0,數學公式)時,f(x)=log2(3x+1),則f(2009)=


  1. A.
    4
  2. B.
    2
  3. C.
    -2
  4. D.
    log27
C
分析:由題設知f(2009)=f(669×3+2)=f(2)=f(-1)=-f(1)=-log2(3×1+1)=-2.
解答:f(2009)=f(669×3+2)
=f(2)
=f(-1)
=-f(1)
=-log2(3×1+1)
=-2.
故選C.
點評:本題考查函數值的求法,解題時要認真審題,注意函數的奇偶性和周期的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)計算:[f(1)]2-[g(1)]2
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數列{an}的前n項和.求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

同步練習冊答案