【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的星級賣場”.

(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數(shù);

(2)若在這10個賣場中,乙型號電視機銷售量的平均數(shù)為26.7,求a>b的概率;

(3)若a=1,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷b為何值時,達到最值.

(只需寫出結(jié)論)

【答案】1523,達到最小值

【解析】試題分析:(1)由莖葉圖和平均數(shù)的定義可得,即可得到符合星際賣場的個數(shù)

記事件,由題意和平均數(shù)可得,列舉可得的取值共9種情況,其中滿足的共4種情況,由概率公式即可得到所求答案。

根據(jù)方差公式,只需時,達到最小值

試題解析:(1)解:根據(jù)莖葉圖,

得甲組數(shù)據(jù)的平均數(shù)為,

由莖葉圖,知甲型號電視機的星級賣場的個數(shù)為

2)解:記事件A, 因為乙組數(shù)據(jù)的平均數(shù)為267,

所以,

解得

所以取值共有9種情況,它們是:,,,,,,,其中4種情況,它們是:,,, 所以的概率

3)解:當時,達到最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.

下列命題:

①“囧函數(shù)”的值域為;

②“囧函數(shù)”在上單調(diào)遞增;

③“囧函數(shù)”的圖象關(guān)于軸對稱;

④“囧函數(shù)”有兩個零點;

⑤“囧函數(shù)”的圖象與直線

至少有一個交點.正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面 側(cè)面1 ,

(Ⅰ)求證: ;

(Ⅱ)求三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點.

(1)求證:AP∥平面MBD;

(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(4, 0),B2, 2),C (6, 0),記ABC的外接圓為P

1P的方程.

(2)對于線段PA上的任意一點G,是否存在以B為圓心的圓,在圓B上總能找到不同的兩點E、F,滿足=,若存在,求圓B的半徑的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,已知曲線為參數(shù)),在以為極點, 軸正半軸為極軸的極坐標系中,曲線,曲線.

(1)求曲線的交點的直角坐標;

(2)設(shè)點, 分別為曲線上的動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)的兩個極值點為,求函數(shù)的解析式;

(2)在(1)的條件下,求函數(shù)的圖象過點的切線方程;

(3)對一切恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖.

(1)已知、,三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,的值;

(2)該電子商務(wù)平臺將年齡在之間的人群定義為高消費人群其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放80元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取了10人,現(xiàn)在要在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望

查看答案和解析>>

同步練習冊答案