8.復(fù)數(shù)z=2-i(i是虛數(shù)單位)的虛部為(  )
A.-iB.iC.-1D.2

分析 直接利用復(fù)數(shù)的基本概念得答案.

解答 解:復(fù)數(shù)z=2-i的虛部為-1.
故選:C.

點評 本題考查復(fù)數(shù)的基本概念,是基礎(chǔ)的概念題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)$f(x)=|\frac{x}{2}+\frac{1}{2a}|+|\frac{x}{2}-\frac{a}{2}|,(a>0)$.
(Ⅰ)證明:f(x)≥1;
(Ⅱ)若f(6)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx+$\frac{ax}{x+1}$(a∈R)
(1)若函數(shù)f(x)在區(qū)間(0,4)上單調(diào)遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線y=2x相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C上任意一點M到點F(0,1)的距離比它到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)斜率不為0且過點P(2,2)的直線m與曲線C交于A,B兩點,設(shè)$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,當(dāng)△AOB的面積為4$\sqrt{2}$時(O為坐標(biāo)原點),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.sin210°的值等于( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)F1,F(xiàn)2分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點,雙曲線上存在一點P使得∠F1PF2=60°,|OP|=2b,(O為坐標(biāo)原點),則該雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{7}{6}$D.$\frac{{\sqrt{42}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.橢圓$\frac{{x}^{2}}{a}$+y2=1(a>1)與雙曲線$\frac{{y}^{2}}$-y2=1(b>0)有相同的焦點F1、F2,若P為兩曲線的一個交點,則△PF1F2的面積為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知命題p:?x∈R,|2x+1|>a-2|x|,若¬p是真命題,則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是邊長為2的等邊三角形,E是BC的中點.
(1)求證:AE∥平面PCD;
(2)記平面PAB與平面PCD的交線為l,求二面角C-l-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案