A. | $\frac{11}{4}$ | B. | $\frac{5\sqrt{5}}{4}$ | C. | $\frac{41}{20}$ | D. | 5 |
分析 圓的內(nèi)接四邊形對(duì)角互補(bǔ),而x軸與y軸垂直,所以直線(xiàn)2x+y-4=0與x+ky-3=0垂直,再利用兩直線(xiàn)A1x+B1y+C1=0與A2x+B2y+C2=0垂直的充要條件A1A2+B1B2=0,列方程即可得k,即可得出結(jié)果
解答 解:圓的內(nèi)接四邊形對(duì)角互補(bǔ),因?yàn)閤軸與y軸垂直,所以2x+y-4=0與x+ky-3=0垂直
直線(xiàn)A1x+B1y+C1=0與直線(xiàn)A2x+B2y+C2=0垂直的充要條件是 A1A2+B1B2=0
由2×1+1×k=0,解得k=-2,
直線(xiàn)2x+y-4=0與坐標(biāo)軸的交點(diǎn)為(2,0),(0,4),x+ky-3=0與坐標(biāo)軸的交點(diǎn)為
(0,-$\frac{3}{2}$),(3,0),兩直線(xiàn)的交點(diǎn)縱坐標(biāo)為-$\frac{2}{5}$,
∴四邊形的面積為$\frac{1}{2}×3×\frac{3}{2}-\frac{1}{2}×1×\frac{2}{5}$=$\frac{41}{20}$.
故選C
點(diǎn)評(píng) 本題考查了兩直線(xiàn)垂直的充要條件,如果利用斜率還需要討論斜率是否存在,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$+1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-y-1=0 | B. | x-y=0 | C. | x-y-$\sqrt{3}$=0 | D. | x-y-2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com