16.已知矩陣A=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$,設(shè)曲線C:(x-y)2+y2=1在矩陣A對應(yīng)的變換下得到曲線C′,求C′的方程.

分析 設(shè)P(x0,y0)為曲線C上任意一點(diǎn),點(diǎn)P在矩陣A對應(yīng)的變換下得到點(diǎn)Q(x,y),利用$[\begin{array}{l}x\\ y\end{array}]=[{\begin{array}{l}2&{-2}\\ 0&1\end{array}}][\begin{array}{l}{x_0}\\{y_0}\end{array}]$,推出$\left\{\begin{array}{l}{x_0}=\frac{x}{2}+y\\{y_0}=y\end{array}\right.$,然后求解曲線C′的方程.

解答 解:設(shè)P(x0,y0)為曲線C上任意一點(diǎn),點(diǎn)P在矩陣A對應(yīng)的變換下得到點(diǎn)Q(x,y),
則:$[\begin{array}{l}x\\ y\end{array}]=[{\begin{array}{l}2&{-2}\\ 0&1\end{array}}][\begin{array}{l}{x_0}\\{y_0}\end{array}]$,即$\left\{\begin{array}{l}x=2{x_0}-2{y_0}\\ y={y_0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x_0}=\frac{x}{2}+y\\{y_0}=y\end{array}\right.$,…(5分)
(注:用逆矩陣的方式求解同樣給分)
又${({x_0}-{y_0})^2}+{y_0}^2=4$,∴${(\frac{x}{2}+y-y)^2}+{y^2}=1$,即$\frac{x^2}{4}+{y^2}=1$,
∴曲線C′的方程為$\frac{x^2}{4}+{y^2}=1$.…(10分)

點(diǎn)評 本題考查矩陣的變換,曲線方程的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,焦距為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C相交于A,B兩點(diǎn),且kOA•kOB=-$\frac{3}{4}$.
①求證:△AOB的面積為定值;
②橢圓C上是否存在一點(diǎn)P,使得四邊形OAPB為平行四邊形?若存在,求出點(diǎn)P橫坐標(biāo)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.襄陽農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2326322616
襄陽農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$•$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.從3名男同學(xué)和2名女同學(xué)中任選2名參加體能測試,則恰有1名男同學(xué)參加體能測試的概率為$\frac{3}{5}$.(結(jié)果用最簡分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某公司為了準(zhǔn)確地把握市場,做好產(chǎn)品生產(chǎn)計(jì)劃,對過去四年的數(shù)據(jù)進(jìn)行整理得到了第x年與年銷量y(單位:萬件)之間的關(guān)系如表:
x1234
y12284256
(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)根據(jù)(Ⅰ)中的散點(diǎn)圖擬合y與x的回歸模型,并用相關(guān)系數(shù)加以說明;
(Ⅲ)建立y關(guān)于x的回歸方程,預(yù)測第5年的銷售量約為多少?.
附注:參考數(shù)據(jù):$\sqrt{\sum_{i=1}^4{{{({y_i}-\overline y)}^2}}}≈32.6$,$\sqrt{5}≈2.24$,$\sum_{i=1}^4{{x_i}{y_i}=418}$.
參考公式:相關(guān)系數(shù)$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}$,
回歸方程$\widehaty=\widehata+\widehatbx$中斜率和截距的最小二乘法估計(jì)公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知(x-1)(ax+1)6展開式中含x2項(xiàng)的系數(shù)為0,則正實(shí)數(shù)a=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.總體由編號為01,02,…,29,30的30個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取4個(gè)個(gè)體.選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出的第4個(gè)個(gè)體的編號為29
7806 6572 0802 6314 2947 1821 9800
3204 9234 4935 3623 4869 6938 7481

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.春天是鼻炎和感冒的高發(fā)期,某人在春季里鼻炎發(fā)作的概率為0.8,鼻炎發(fā)作且感冒的概率為0.6,則此人鼻炎發(fā)作的條件下,他感冒的概率為( 。
A.0.48B.0.40C.0.64D.0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個(gè)幾何體的三視圖如圖所示,已知這個(gè)幾何體的體積為$10\sqrt{3}$,則這個(gè)幾何體的外接球的表面積為( 。
A.B.24πC.48πD.64π

查看答案和解析>>

同步練習(xí)冊答案