函數(shù)f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常數(shù),A>0,ω>0)的部分圖象如圖所示,則f(0)=   
【答案】分析:根據(jù)已知的函數(shù)圖象,我們根據(jù)函數(shù)圖象過(guò)(,0),(,-)點(diǎn),我們易結(jié)合A>0,w>0求出滿(mǎn)足條件的A、ω、φ的值,進(jìn)而求出滿(mǎn)足條件的函數(shù)f(x)的解析式,將x=0代入即可得到f(0)的值.
解答:解:由的圖象可得函數(shù)的周期T滿(mǎn)足
=
解得T=π=
又∵ω>0,故ω=2
又∵函數(shù)圖象的最低點(diǎn)為(,-)點(diǎn)
故A=
sin(2×+φ)=-
+φ=
故φ=
∴f(x)=sin(2x+
∴f(0)=sin=
故答案為:
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)y=Asin(ωx+φ)的圖象變換,其中利用已知函數(shù)的圖象求出滿(mǎn)足條件的A、ω、φ的值,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為
π
2
,
(1)求函數(shù)f(x)的解析式和當(dāng)x∈[0,π]時(shí)f(x)的單調(diào)減區(qū)間;
(2)設(shè)a∈(0,
π
2
),則f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=2cos2x的圖象,則只要將f(x)的圖象)向
平移
π
12
π
12
個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值為4,最小正周期為
3

(1)求函數(shù)f(x)的解析式;
(2)設(shè)a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,若△EFG是邊長(zhǎng)為2的正三角形,則f(1)=( 。
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案