【題目】已知每一項(xiàng)都是正數(shù)的數(shù)列滿足,

(1)用數(shù)學(xué)歸納法證明: ;

(2)證明:

(3)記為數(shù)列的前項(xiàng)和,證明:

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】試題分析:(1)由于是隔項(xiàng),所以先由求出之間關(guān)系,并在利用歸納假設(shè)時(shí),注意對稱性,兩個(gè)式子同時(shí)運(yùn)用: (2)奇數(shù)項(xiàng)隔項(xiàng)遞減,且最大值為,所以研究偶數(shù)項(xiàng)單調(diào)性:隔項(xiàng)遞增,且最小值為,(同(1)的方法給予證明),最后需證明,根據(jù)歸納可借助第三量,作差給予證明;(3)先探求數(shù)列遞推關(guān)系: ,再利用等比數(shù)列求和公式得.

試題解析:(1)由題知, ,

①當(dāng)時(shí), ,

, 成立;

②假設(shè)時(shí),結(jié)論成立,即

因?yàn)?/span>

所以

時(shí)也成立,

由①②可知對于,都有成立.

(2)由(1)知, ,

所以,

同理由數(shù)學(xué)歸納法可證,

.

猜測: ,下證這個(gè)結(jié)論.

因?yàn)?/span>

所以異號(hào).注意到,知,

.

所以有,

從而可知.

(3)

所以

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若,求證:函數(shù)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x∈[-2,1]時(shí),不等式ax3x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強(qiáng)力打造的大型勵(lì)志專業(yè)音樂評論節(jié)目,于2012713日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團(tuán)隊(duì)中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

導(dǎo)師轉(zhuǎn)身人數(shù)(人)

4

3

2

1

獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)

1

2

2

1

現(xiàn)從這6位選手中隨機(jī)抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

1)請列出所有的基本事件;

2)求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個(gè)結(jié)果:①;②26-7;③,其中正確的結(jié)論是( 。

A. 僅有① B. 僅有② C. ②與③ D. 僅有③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中, , , ,平面平面,四邊形是矩形, ,點(diǎn)在線段上,且

(1)求證: 平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)數(shù),整數(shù),

(1)證明:當(dāng)時(shí), ;

(2)數(shù)列滿足, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線的參數(shù)方程為: t為參數(shù)),兩曲線相交于M,N兩點(diǎn).

)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;

)若P﹣2﹣4),求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人比例;

(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

(Ⅲ)根據(jù)(Ⅱ)中的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)老年人中需要志愿幫助?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案