對任意x,y∈R,函數(shù)f(x)都滿足f(x+y)=f(x)+f(y)+2恒成立,則f(5)+f(-5)等于( 。
A、0B、-4C、-2D、2
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)抽象函數(shù)的關(guān)系式,求出f(0)的值,然后x=5,y=-5即可得到結(jié)論.
解答: 解:f(x+y)=f(x)+f(y)+2成立,
∴令x=1,y=0得f(1)=f(1)+f(0)+2,
則f(0)=-2;
令x=5,y=-5得
f(5-5)=f(5)+f(-5)+2=f(0),
即f(5)+f(-5)=f(0)-2=-2-2=-4,
故選:B
點(diǎn)評:本題主要考查函數(shù)值的計(jì)算,利用賦值法是解決抽象函數(shù)的基本方法,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將下列各分?jǐn)?shù)指數(shù)冪寫成根式的形式:
(1)0.5
1
2
;(2)65-
3
4
;(3)2.3
2
3
;(4)82-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

提高穿山隧道的車輛通行能力可有效改善交通狀況,在一般情況下,隧道內(nèi)的車流速度v(單位:千米、小時)是車流密度x(單位:輛/千米,車流密度指每千米道路上車輛的數(shù)量)的函數(shù).當(dāng)隧道內(nèi)的車流密度達(dá)到210輛/千米時,將造成堵塞,此時車流速度為0;當(dāng)車流密度不超過30輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)30≤x≤210時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤210時,求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過某觀測點(diǎn)的車輛數(shù),單位:輛/小時)f(x)=x•v(x)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-6x-7=0與拋物線C:y2=2px(p>0)的準(zhǔn)線相切
(Ⅰ)求拋物線C的方程
(Ⅱ)過拋物線C的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),若|AB|=7,求線段AB的中點(diǎn)M到y(tǒng)軸的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4ax及直線x=x0(x0>0)所圍成的圖形繞y軸旋轉(zhuǎn)一周而成的幾何體體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax(a>0且a≠1)在[1,2]上的最大值與最小值之和為6,記f(x)=
ax-1
ax+1

(1)求a的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求不等式f(x)>
15
17
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=x4-8x2+c在[-1,3]上的最小值是-14,求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x方程x3+ax2+bx+c=0的三個根可以作為一橢圓,一雙曲線,一拋物線的離心率,則
b
a
的取值范圍( 。
A、(-2,-
1
2
B、(-2,-1)
C、(-1,-
1
2
D、(-∞,-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1的左右兩個焦點(diǎn),|F1F2|=4,長軸長為6,又A,B分別是橢圓C上位于x軸上方的兩點(diǎn),且滿足
AF1
=2
BF2

(Ⅰ)求橢圓C的方程;
(Ⅱ)求直線AF1的方程;
(Ⅲ)求四邊形ABF2F1的面積.

查看答案和解析>>

同步練習(xí)冊答案