已知函數(shù)f(x)=
-2x+1,x<1
x2-2x,x≥1

(1)比較f[f(-3)]與f[f(3)]的大;
(2)求滿足f(x)=3的x的值.
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由已知得f(-3)=-2×(-3)=6,f[f(-3)]=f(6)=36-12=24,f(3)=9-6=3,f[f(3)]=f(3)=9-6=3,從而得到f[f(-3)]>f[f(3)].
(2)當(dāng)x<1時,f(x)=-2x+1=3,當(dāng)x≥1時,f(x)=x2-2x=3,由此能求出滿足f(x)=3的x的值.
解答: 解:(1)∵f(x)=
-2x+1,x<1
x2-2x,x≥1
,
∴f(-3)=-2×(-3)=6,f[f(-3)]=f(6)=36-12=24,
f(3)=9-6=3,f[f(3)]=f(3)=9-6=3,
∴f[f(-3)]>f[f(3)].
(2)當(dāng)x<1時,f(x)=-2x+1=3,解得x=-1;
當(dāng)x≥1時,f(x)=x2-2x=3,解得x=3或x=-1(舍).
∴x=-1或x=3.
點評:本題考查函數(shù)值的求法及應(yīng)用,是基礎(chǔ)題,解題時要注意分段函數(shù)的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、
4
3
B、
5
+6
C、
5
+5
D、
3
+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(sinx+cosx)sin2x
sinx
(x≠kπ,k∈z).
(1)求函數(shù)f(x)的最大值、最小值及最小正周期;
(2)求函數(shù)f(x)在(
π
2
,π)上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知分段函數(shù)f(x)為R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-2x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為實數(shù)集R,集合A={x|
1
2
≤x≤3},B={x||x|+a<0}.若(∁RA)∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分別是棱AD、PC的中點.
(1)求證:EF∥平面PAB,EF⊥平面PBC;
(2)若直線PC與平面ABCD所成角為
π
4
,點P在AB上的射影O在靠近點B的一側(cè),求BO、PB長及二面角P-BC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=0,且f(x+1)=f(x)+x+1,求y=f(x2-2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線C1:有y2=4x的焦點與橢圓C2的右焦點重合,橢圓的上頂點為B,右頂點為A,橢圓的左、右焦點為F1、F2,3|
F1B
|cos∠BF1F2=
3
|
OB
|
(Ⅰ)求橢圓C2的標(biāo)準(zhǔn)方程;
(Ⅱ)若斜率為k(k>0)的直線l,過點D(0,2),且與橢圓C2交于M,N兩點.H為M,N的中點,且
OH
AB
,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M、N,定義M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).設(shè)A={y|y=x2-2x,x∈R},B={x|y=
1
-x
,x∈R},求A⊕B.

查看答案和解析>>

同步練習(xí)冊答案