討論函數(shù)y=
lnx
x
在區(qū)間上的單調(diào)性.
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的綜合應用
分析:求出原函數(shù)的定義域,求出原函數(shù)的導函數(shù),由導函數(shù)的零點對定義域分段,然后根據(jù)導函數(shù)在各區(qū)間段內(nèi)的符號得到原函數(shù)的單調(diào)性.
解答: 證明:函數(shù)y=
lnx
x
的定義域為(0,+∞),
y=
1-lnx
x2
,由y′=0,得x=e.
當x∈(0,e)時,y′>0,函數(shù)為增函數(shù);
當x∈(e,+∞)時,y′<0,函數(shù)為減函數(shù).
點評:本題考查了利用導數(shù)研究函數(shù)的單調(diào)性,主要考查導函數(shù)的正負與原函數(shù)的單調(diào)性之間的關系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:ABCD是矩形,設PA=a,PA⊥平面ABCD,M,N分別是AB,PC的中心點.
(1)若PA=BC,求證:MN⊥平面PCD;
(2)若PD=AB,且平面MND⊥平面PCD,求二面角P-CD-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四面體O-ABC中,M、N分別是OA、BC的中點,P是MN上(靠近點M)的三等分點,其中OA=OB=OC=1,∠AOC=∠AOB=∠BOC=60°,求異面直線OP與AB所成角的余弦值.(用向量法)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當x∈[0,2)時,f(x)=
x2-x,x∈[0,1)
-(
1
2
)|x-
3
2
|
,x∈[1,2)
則當x∈[-4,-2)時,函數(shù)f(x)的最小值為( 。
A、-
1
16
B、-
1
4
C、-
1
2
D、-
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(普通文科做)已知f(x)=x3+bx2+9x+a有兩個極值點,求:
(1)b的取值范圍;
(2)當x=1時,切線的斜率為0.求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求證:PC⊥AB;
(Ⅱ)求三棱錐P-ACB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=(-1)n+1n-2an(n∈N+)且a1=a7,那么a1+a2+a3+a4+a5+a6=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-(a+1)x(a∈R)
(1)當x>0時,討論函數(shù)f(x)的單調(diào)性;
(2)若x∈R,f(x)≥b(b∈R)恒成立,求(a+1)b的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+bx2+cx的極值點為x=-
2
3
和x=1
(1)求b,c的值與f(x)的單調(diào)區(qū)間
(2)當x∈[-1,2]時,不等式f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案