【題目】設(shè)是給定的平面向量,且為非零向量,關(guān)于的分解,有如下個(gè)命題:

給定向量,總存在向量,使得;

給定不共線向量,總存在實(shí)數(shù),使得;

給定向量和整數(shù),總存在單位向量和實(shí)數(shù),使得;

給定正數(shù),總存在單位向量和單位向量,使得;

若上述命題中的向量在同一平面內(nèi)且兩兩不共線,則其中真命題的序號(hào)為________.

【答案】①②

【解析】

根據(jù)向量加法的三角形法則,可判斷①;根據(jù)平面向量的基本定理可判斷②③;舉出反例,,可判斷④.

平面向量在同一平面內(nèi)且兩兩不共線,

對(duì)①,給定向量,總存在向量,使,故①正確;

對(duì)②,由向量,在同一平面內(nèi)且兩兩不共線,

故給定不共線向量,總存在實(shí)數(shù),使,故②正確;

對(duì)③,給定單位向量和正數(shù),不一定存在單位向量和實(shí)數(shù),使,故③錯(cuò)誤;

對(duì)④,當(dāng),時(shí),不總存在單位向量和單位向量,使,故④錯(cuò)誤.

故答案為:①②.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

①方程表示一個(gè)圓;

②若,則方程表示焦點(diǎn)在軸上的橢圓;

③已知點(diǎn),若,則動(dòng)點(diǎn)的軌跡是雙曲線的右支;

④以過拋物線焦點(diǎn)的弦為直徑的圓與該拋物線的準(zhǔn)線相切,

其中正確說法的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)的圖像與軸相切,求證:對(duì)于任意互不相等的正實(shí)數(shù),,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,則的最小值為__________; 有最小值,則實(shí)數(shù)的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三棱柱的所有棱長都相等,中點(diǎn),則二面角的正切值為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩陣乘法運(yùn)算的幾何意義為平面上的點(diǎn)在矩陣的作用下變換成點(diǎn),記,且.

1)若平面上的點(diǎn)在矩陣的作用下變換成點(diǎn),求點(diǎn)的坐標(biāo);

2)若平面上相異的兩點(diǎn)、在矩陣的作用下,分別變換為點(diǎn)、,求證:若點(diǎn)為線段上的點(diǎn),則點(diǎn)的作用下的點(diǎn)在線段上;

3)已知的頂點(diǎn)坐標(biāo)為、、,且在矩陣作用下變換成,記的面積分別為,求的值,并寫出一般情況(三角形形狀一般化且變換矩陣一般化)下的關(guān)系(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)有兩個(gè)文科班,四個(gè)理科班,現(xiàn)每個(gè)班指定1人,對(duì)各班的衛(wèi)生進(jìn)行檢查.若每班只安排一人檢查,且文科班學(xué)生不檢查文科班,理科班學(xué)生不檢查自己所在的班,則不同安排方法的種數(shù)是( )

A.48B.72C.84D.168

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體中,點(diǎn)E是棱上的一個(gè)動(dòng)點(diǎn),若平面交棱于點(diǎn)F,給出下列命題:

①四棱錐的體積恒為定值;

②對(duì)于棱上任意一點(diǎn)E,在棱上均有相應(yīng)的點(diǎn)G,使得平面;

O為底面對(duì)角線的交點(diǎn),在棱上存在點(diǎn)H,使平面;

④存在唯一的點(diǎn)E,使得截面四邊形的周長取得最小值.

其中為真命題的是____________________.(填寫所有正確答案的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),動(dòng)點(diǎn)軸上運(yùn)動(dòng),過點(diǎn)作直線軸于點(diǎn),延長至點(diǎn),使點(diǎn)的軌跡是曲線

1)求曲線的方程;

2)若是曲線上的兩個(gè)動(dòng)點(diǎn),滿足,證明:直線過定點(diǎn);

3)若直線與曲線交于,兩點(diǎn),且,,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案