已知函數(shù).
(1)若是偶函數(shù),在定義域上恒成立,求實數(shù)的取值范圍;
(2)當(dāng)時,令,問是否存在實數(shù),使在上是減函數(shù),在上是增函數(shù)?如果存在,求出的值;如果不存在,請說明理由.
(1)
(2)
解析試題分析:解:(1)是偶函數(shù),即,
又恒成立即
當(dāng)時
當(dāng)時,,
當(dāng)時,,
綜上:
(2)
是偶函數(shù),要使在上是減函數(shù)在上是增函數(shù),即只要滿足在區(qū)間上是增函數(shù)在上是減函數(shù) .
令,當(dāng)時;時,由于時,
是增函數(shù)記,故與在區(qū)間上有相同的增減性,當(dāng)二次函數(shù)在區(qū)間上是增函數(shù)在上是減函數(shù),其對稱軸方程為.
考點:函數(shù)的性質(zhì)的綜合運用
點評:主要是考查了函數(shù)奇偶性和單調(diào)性以及不等式的恒成立問題的綜合運用,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當(dāng)a=時,方程f(1-x)=有實根,求實數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍.
(Ⅲ)已知當(dāng)恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a為實數(shù),函數(shù)f(x)=(x2+1)(x+a),若f′(-1)=0,求函數(shù)y=f(x)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在[-1,1]上的奇函數(shù)滿足,且當(dāng),時,有.
(1)試問函數(shù)f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標(biāo);若不存在,請說明理由并加以證明.
(2)若對所有,恒成立,
求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域為,當(dāng)時,,且對于任意的,恒有成立.
(1)求;
(2)證明:函數(shù)在上單調(diào)遞增;
(3)當(dāng)時,
①解不等式;
②求函數(shù)在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當(dāng)時,函數(shù)的值域是,求實數(shù)與的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)
(1)求的極小值;
(2)若在上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè),若在(是自然對數(shù)的底數(shù))上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com