求圓C1:x2+y2-2x+2y-1=0與圓C2:x2+y2+2x-2y-3=0的公共弦長(zhǎng).
考點(diǎn):圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:先求出圓C1:x2+y2-2x+2y-1=0與圓C2:x2+y2+2x-2y-3=0的公共弦所在的直線方程為2x-2y-1=0,再由點(diǎn)到直線的距離公式能求出兩圓的公共弦長(zhǎng).
解答: 解:∵圓C1:x2+y2-2x+2y-1=0與圓C2:x2+y2+2x-2y-3=0的公共弦所在的直線方程為:
(x2+y2-2x+2y-1)-(x2+y2+2x-2y-3)=-4x+4y+2=0,即2x-2y-1=0,
∵圓C1:x2+y2-2x+2y-1=0的半徑為
3
,圓心C1 (1,-1)到公共弦2x-2y-1=0的距離:
d=
|2+2-1|
22+22
=
6
4
,∴公共弦長(zhǎng)|AB|=2
(
3
)
2
-(
6
4
)
2
=
42
2

故答案為:
42
2
點(diǎn)評(píng):本題考查兩圓的公共弦長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={a+1},N={x∈R|x2≤4},若M∪N=N,則實(shí)數(shù)a的取值范圍為( 。
A、[-1,3]
B、[-3,1]
C、[-3,3]
D、(-∞,-3]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F是橢圓
x2
25
+
y2
16
=1
的左焦點(diǎn),且橢圓上有2011個(gè)不同的點(diǎn)Pi(xi,yi)(i=1,2,3,…2011),線段|FP1|,|FP2|,…|FP2011|成等差數(shù)列,若|FP1|=2,|FP2011|=8,則點(diǎn)P2010的橫坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|sinx|+|cosx|≥1.
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},圓C1:x2+y2-2anx+2an+1y-1=0和圓C2:x2+y2+2x+2y-2=0.若圓C1與C2交于A、B兩點(diǎn),且AB平分圓C2的周長(zhǎng).
(Ⅰ)求證:數(shù)列{an}是等差數(shù)列;
(Ⅱ)若a1=-3,求圓C1被直線x+2y+2=0截得弦長(zhǎng)最小時(shí)圓C1的方程.
(Ⅲ)若圓C3為(Ⅱ)中求出的圓C1的同心圓,且半徑為2.設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C2和C3相交,且直線l1被圓C2截得的弦長(zhǎng)與直線l2被圓C3截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
x-1

(1)求證:函數(shù)在(1,+∞)上是減函數(shù);
(2)求函數(shù)在x∈[3,5]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若S是等差數(shù)列的奇數(shù)項(xiàng)的和,S是等差數(shù)列的偶數(shù)項(xiàng)的和,Sn是等差數(shù)列的前n項(xiàng)的和,則有如下性質(zhì):
(1)當(dāng)n為偶數(shù)時(shí),則S-S=
 
(其中d為公差);
(2)當(dāng)n為奇數(shù)時(shí),則S-S=
 
,S=
 
,S=
 
,
S
S
=
 
;
Sn
S-S
=
S+S
S-S
=
 
(其中a是等差數(shù)列的中間一項(xiàng)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:方程x2+mx+1=0有兩個(gè)不相等的實(shí)根,q:不等式4x2+4(m-2)x+1>0無(wú)實(shí)根.若p∨q為真命題,¬q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中是真命題的是(  )
A、任何實(shí)數(shù)都有算術(shù)平方根
B、存在三個(gè)實(shí)數(shù),它們的和與積相等
C、橢圓的離心率e越接近1時(shí)越扁,當(dāng)e=1時(shí)為線段F2F2
D、任意一個(gè)無(wú)理數(shù),其平方后仍為無(wú)理數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案