設(shè)函數(shù).
(1) 求的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù),使得對任意的,當(dāng)時恒有成立.若存在,求的范圍,若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在時有極值0。
(1)求常數(shù) 的值;
(2)求的單調(diào)區(qū)間。
(3)方程在區(qū)間[-4,0]上有三個不同的實(shí)根時實(shí)數(shù)的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若無極值點(diǎn),但其導(dǎo)函數(shù)有零點(diǎn),求的值;
(Ⅱ)若有兩個極值點(diǎn),求的取值范圍,并證明的極小值小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)當(dāng)時,求的最大值;
(2)令,以其圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(其中,),且函數(shù)的圖象在 點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿足,求實(shí)數(shù)m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(常數(shù))在處取得極大值M.
(Ⅰ)當(dāng)M=時,求的值;
(Ⅱ)記在上的最小值為N,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)
(2)是否存在實(shí)數(shù),使在上的最小值為,若存在,求出的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在區(qū)間[0,1]上是增函數(shù),在區(qū)間上是減函數(shù),又
(Ⅰ)求的解析式;
(Ⅱ)若在區(qū)間(m>0)上恒有≤成立,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com