9.函數(shù)f(x)=1+log2x與g(x)=21-x在同一直角坐標系下的圖象大致是( 。
A.B.C.D.

分析 分析兩個函數(shù)圖象與坐標的交點坐標及單調(diào)性,可得函數(shù)的圖象.

解答 解:函數(shù)f(x)=1+log2x為增函數(shù),且過點(1,1),($\frac{1}{2}$,0),
函數(shù)g(x)=21-x為減函數(shù),且過(0,2),(1,1),
故選:C

點評 本題考查的知識點是函數(shù)的圖象,指數(shù)函數(shù)的圖象和性質(zhì),對數(shù)函數(shù)的圖象和性質(zhì),難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.實驗中學學生會將在5月份對各部進行改選,勞動部現(xiàn)從高一甲、乙、丙、丁四個人中選兩名勞動部長,則甲被選中的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設集合A={1,2,3},B={0,1,2},則A∪B中元素的個數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.求值化簡:
(1)$\frac{{1+\frac{1}{2}lg9-lg240}}{{1-\frac{2}{3}lg27+lg\frac{36}{5}}}$+1
(2)$\frac{{{{({a^{\frac{2}{3}}}•{b^{-1}})}^{-\frac{1}{2}}}•{a^{\frac{1}{2}}}•{b^{\frac{1}{3}}}}}{{\root{6}{{a•{b^5}}}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知集合S={x|1<x≤7},A={x|2≤x<5},B={x|3≤x<7}.求:
(1)(∁SA)∩(∁SB);     
(2)∁S(A∪B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=$\sqrt{2}$,且D為BC中點.
(1)求證:A1C∥平面AB1D;
(2)設N為棱CC1的中點,且滿足AB⊥AC,求證:平面AB1D⊥平面ABN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(x)=$\frac{{a{x^2}}}{x+b}$(a,b為常數(shù)),方程f(x)=2x+3有兩個實數(shù)根為-2,3.
(1)當x>2時,求函數(shù)f(x)的最小值
(2)解關于x的不等式f(x)<$\frac{{k(x-1)+1-{x^2}}}{2-x}$,其中k為參數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知集合M={f(x)|存在非零常數(shù)k,對定義域中的任意x,等式f(kx)=$\frac{k}{2}$+f(x)恒成立}.現(xiàn)有兩個函數(shù):f(x)=ax+b(a≠0),g(x)=log2x,則函數(shù)f(x)、g(x)分別與集合M的關系為f(x)∉M,g(x)∈M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,用長為12m的鐵絲彎成下部為矩形,上部為半圓形的框架窗戶,若半圓半徑
為x.
(1)求此框架圍成的面積y與x的函數(shù)式y(tǒng)=f (x),
(2)半圓的半徑是多長時,窗戶透光的面積最大?

查看答案和解析>>

同步練習冊答案