將下面用分析法證明
a2+b2
2
≥ab的步驟補充完整;要證
a2+b2
2
≥ab,只需證a2+b2≥2ab,也就是證
 
,即證
 
,由于
 
顯然成立,因此原不等式成立.
考點:反證法與放縮法
專題:證明題,推理和證明
分析:利用分析法(執(zhí)果索因),要證
a2+b2
2
≥ab,只需證明(a-b)2≥0即可,該式顯然成立.
解答: 解:要證
a2+b2
2
≥ab,只需證a2+b2≥2ab,
也就是證a2+b2-2ab≥0,
即證(a-b)2≥0
由于(a-b)2≥0顯然成立,因此原不等式成立.
故答案為:a2+b2-2ab≥0,(a-b)2≥0,(a-b)2≥0.
點評:本題考查不等式的證明,著重考查分析法的應(yīng)用,考查推理能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓Γ1
x2
m2
+
y2
m2-4
=1和雙曲線Γ2
x2
n2
-
y2
4-n2
=1的公共焦點,P是它們的一個公共點,且∠F1PF2=
π
3
,則mn的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x2>x1>1則(  )
A、e x1-x2<lgx1-lgx2
B、e 
x2
x1
>lgx2-lgx1
C、x1 x2>x2 x1
D、x1 x2<x2 x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:a1=1,an+1-an=n,求{an}通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.己知直線l的參數(shù)方程為
x=t
y=at
(t為參數(shù)),曲線C1的方程為ρ=4sinθ.若線段OQ的中點P始終在C1上.
(Ⅰ)求動點Q的軌跡C2的極坐標(biāo)方程:
(Ⅱ)直線l與曲線C2交于A,B兩點,若丨AB丨≥4
2
,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+bx+c,若函數(shù)y=|f(x)|在區(qū)間[-1,1]上的最大值是M,求證:M≥
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(3x+
π
4
)的定義域
 
;值域
 
;對稱中心為
 
;對稱軸為
 
;單調(diào)增區(qū)間為
 
;單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐的軸截面SAB是邊長為2的等邊三角形,O為底面的中心,M為SO的中點,動點P在圓錐底面內(nèi)(包括圓周),若 AM⊥MP,則點P形成的軌跡的長度為(  )
A、
7
6
B、
7
5
C、
7
4
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某正五棱臺燈罩的俯視圖,在A,B,C,D,E五個側(cè)面上裝裱3種不同的透明中國山水畫,相鄰區(qū)域的中國山水畫不同,則不同的裝裱方案數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案