【題目】如圖,已知橢圓,點(diǎn)B是其下頂點(diǎn),過點(diǎn)B的直線交橢圓C于另一點(diǎn)A(A點(diǎn)在軸下方),且線段AB的中點(diǎn)E在直線上.
(1)求直線AB的方程;
(2)若點(diǎn)P為橢圓C上異于A、B的動(dòng)點(diǎn),且直線AP,BP分別交直線于點(diǎn)M、N,證明:OM·ON為定值.
【答案】(1)(2)詳見解析
【解析】試題分析:(1)兩點(diǎn)確定一條直線,所以只需再確定A點(diǎn)坐標(biāo)即可,這可利用A在橢圓上及AB中點(diǎn)在直線上聯(lián)立方程組解得:A(,),從而根據(jù)兩點(diǎn)式求出直線AB的方程為.
(2)本題涉及的條件為坐標(biāo),所以用分別表示M點(diǎn)、N點(diǎn)坐標(biāo)就是解題方法:由A,P,M三點(diǎn)共線,又點(diǎn)M在直線y=x上,解得M點(diǎn)的橫坐標(biāo),由B,P,N三點(diǎn)共線,點(diǎn)N在直線y=x上,,解得N點(diǎn)的橫坐標(biāo).所以OM·ON===2
=,又,所以OM·ON====.
試題解析:解:(1)設(shè)點(diǎn)E(m,m),由B(0,-2)得A(2m,2m+2).
代入橢圓方程得,即,
解得或(舍). 3分
所以A(,),
故直線AB的方程為. 6分
(2)設(shè),則,即.
設(shè),由A,P,M三點(diǎn)共線,即,
∴,
又點(diǎn)M在直線y=x上,解得M點(diǎn)的橫坐標(biāo), 9分
設(shè),由B,P,N三點(diǎn)共線,即,
∴,
點(diǎn)N在直線y=x上,,解得N點(diǎn)的橫坐標(biāo). 12分
所以OM·ON===2
====. 16分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,且分別為線段的中點(diǎn),沿把折起,使,得到如下的立體圖形.
(1)證明:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義為n個(gè)正數(shù)的“均倒數(shù)”.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列的前n項(xiàng)和為,若4<對一切恒成立試求實(shí)數(shù)m的取值范圍.
(3)令,問:是否存在正整數(shù)k使得對一切恒成立,如存在求出k值,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的正六邊形ABCDEF中,記以A為起點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量分別為 、 、 、 、 ;以D為起點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量分別為 、 、 、 、 .若m、M分別為( + + )( + + )的最小值、最大值,其中{i,j,k}{1,2,3,4,5},{r,s,t}{1,2,3,4,5},則m、M滿足( )
A.m=0,M>0
B.m<0,M>0
C.m<0,M=0
D.m<0,M<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),解不等式:;
(Ⅱ)當(dāng)時(shí),存在最小值,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集為R,函數(shù) 的定義域?yàn)镸,則RM為( )
A.[﹣1,1]
B.(﹣1,1)
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2019年舉行促銷活動(dòng),經(jīng)過調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費(fèi)用()(單位:萬元)滿足(為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷量只能是1萬件. 已知2019年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).
(1)將該廠家2019年該產(chǎn)品的利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);
(2)該廠家2019年的年促銷費(fèi)用投入多少萬元時(shí),廠家利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com