11.偶函數(shù)f(x)滿足f(x-1)=f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=-x+1,那么在區(qū)間[-3,4]上,函數(shù)y=f(x)的圖象與函數(shù)y=ln|x|的圖象的公共點(diǎn)個(gè)數(shù)是( 。
A.7B.6C.5D.4

分析 由題意知函數(shù)f(x)是偶函數(shù),且周期為2,從而作函數(shù)f(x)的圖象與函數(shù)y=ln|x|的圖象解答.

解答 解:∵f(x-1)=f(x+1),
∴f(x+1-1)=f(x+1+1),
即f(x)=f(x+2)
∴周期為2,
∵函數(shù)f(x)是偶函數(shù),
作函數(shù)f(x)的圖象與函數(shù)y=ln|x|的圖象如下,

故函數(shù)f(x)的圖象與函數(shù)y=ln|x|的圖象交點(diǎn)個(gè)數(shù)為4,
故選:D

點(diǎn)評(píng) 本題考查了函數(shù)的圖象的作法與應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,若平面上點(diǎn)C滿足|2$\overrightarrow{OA}$+$\overrightarrow{CB}$|=$\sqrt{2}$,則|$\overrightarrow{OC}$|的取值范圍是$[2-\sqrt{2},2+\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=x2+$\frac{1}{x}$的圖象在點(diǎn)(1,f(1))處的切線方程為( 。
A.x-y+1=0B.3x-y-1=0C.x-y-1=0D.3x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知O是△ABC所在平面內(nèi)的任意一點(diǎn),且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,則S△OAB:S△ABC=( 。
A.1:2B.1:3C.2:3D.3:4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將4名教師(含2名女教師)分配到三所學(xué)校支教,每所學(xué)校至少分到一名,且2名女教師不能分到同一學(xué)校,則不同分法的種數(shù)為(  )
A.48B.36C.30D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若正△ABC的邊長(zhǎng)為a,其內(nèi)一點(diǎn)P到三邊距離分別為x,y,z,則S△PAB+S△PAC+S△PBC=S△ABC,于是$\frac{1}{2}$ax+$\frac{1}{2}$ay+$\frac{1}{2}$az=S△ABC,x+y+z=$\frac{2{S}_{△ABC}}{a}$.類比推理,求解下面的問題.正四面體棱長(zhǎng)為2,其內(nèi)一點(diǎn)M到各個(gè)面的距離分別為d1,d2,d3,d4,則d1+d2+d3+d4的值為(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式$\frac{x-2}{{x}^{2}-1}$<0的解集為( 。
A.{x|x<-1或1<x<2}B.{x|1<x<2}C.{x|-1<x<2且x≠1}D.{x|x<2且x≠1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,AC交BD于點(diǎn)O,PD=PC=$\sqrt{2}$,PB=2,M為PB的中點(diǎn).
(1)求證:BD⊥平面AMC;
(2)求二面角M-BD-C平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(4,-2),m$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則m=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案