15.已知拋物線的標(biāo)準(zhǔn)方程為x2=8y,則拋物線的準(zhǔn)線方程為(  )
A.x=2B.x=-2C.y=2D.y=-2

分析 利用拋物線方程直接求解拋物線的準(zhǔn)線方程即可.

解答 解:拋物線的標(biāo)準(zhǔn)方程為x2=8y,則拋物線的準(zhǔn)線方程為:y=-2.
故選:D.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,準(zhǔn)線方程的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在(1,+∞)上的函數(shù)f(x)滿足下列兩個(gè)條件:(1)對(duì)任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2]時(shí),f(x)=-x2+2x,記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.[1,2)B.[$\frac{4}{3}$,2)C.($\frac{4}{3}$,2)D.[$\frac{4}{3}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)p:方程x2+mx+1=0有兩個(gè)不等的實(shí)根,q:不等式4x2+4(m-2)x+1>0在R上恒成立,若¬p為真,p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點(diǎn)P是圓x2+y2=1上的一個(gè)動(dòng)點(diǎn),定點(diǎn)M(-1,2),Q是線段PM延長線上的一點(diǎn),且$\overrightarrow{PM}=2\overrightarrow{MQ}$,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)橢圓C1的中心和拋物線C2的頂點(diǎn)均為原點(diǎn)O,C1、C2的焦點(diǎn)均在x軸上,在C1、C2上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表格中:
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)過C2的焦點(diǎn)F作斜率為k的直線l,與C2交于A、B兩點(diǎn),若l與C1交于C、D兩點(diǎn),若$\frac{|AB|}{|CD|}=\frac{5}{3}$,求直線l的方程
x3-24$\sqrt{3}$
y$-2\sqrt{3}$0-4$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.當(dāng)α∈($\frac{π}{2}$,$\frac{3π}{4}$)時(shí),方程x2sinα-y2cosα=1表示的曲線是( 。
A.焦點(diǎn)在x軸上的橢圓B.焦點(diǎn)在y軸上的橢圓
C.焦點(diǎn)在x軸上的雙曲線D.焦點(diǎn)在y軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax3+bx,且函數(shù)y=f(x)-$\frac{3}{2}$x2在x=1和x=2處取得極值
(1)求a,b的值
(2)設(shè)g(x)=x(lnx-1),若對(duì)任意x1∈R,存在x2∈(0,+∞),使f′(x1)-g′(x2)=1,則x22-x12是否存在最小值?若存在,求出最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.?dāng)?shù)列{an}的前n項(xiàng)和Sn滿足:Sn=n2,數(shù)列{bn}滿足:①b3=$\frac{1}{4}$,②bn>0,③bn+12+bn+1bn-bn2=0.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,且a3=S3=3,則a4+a5=( 。
A.12B.9C.6D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案