2.函數(shù)f(x)=log3x-1的零點(diǎn)數(shù)為a,則a=1.

分析 函數(shù)f(x)=log3x-1,根據(jù)單調(diào)性,解方程log3x-1=0,即可.

解答 解:∵函數(shù)f(x)=log3x-1,
∴函數(shù)單調(diào)遞增,
∵f(x)=log3x-1=0,x=3,
∴函數(shù)f(x)=log3x-1的零點(diǎn)有1個,且零點(diǎn)為3,
故答案為:1.

點(diǎn)評 本題考查了函數(shù)的性質(zhì),零點(diǎn)的概念,屬于容易題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=$\frac{x}{1+x}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,則f2017(x)的表達(dá)式為f2017(x)=$\frac{x}{1+2017x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsinθ=2acos θ(a>0),過點(diǎn)P(-2,-4)的直線L的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=4+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,t(為參數(shù)),直線L與曲線C分別交于M,N兩點(diǎn).
(1)寫出曲線C的平面直角坐標(biāo)方程和直線L的普通方程;
(2)若PM,MN,PN成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=|x-a|-$\frac{4}{x}$+a-3(a∈R)有且僅有3個不同的零點(diǎn)x1,x2,x3(x1<x2<x3),且2x2=x1+x3,則a=-$\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)={log_{0.5}}[{{x^2}-2({2a-1})x+8}]$,a∈R.
(1)若使函數(shù)f(x)在[a,+∞)上為減函數(shù),求a的取值范圍;
(2)若關(guān)于x的方程f(x)=-1+log0.5(x+3)在[1,3]上僅有一解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,且過點(diǎn)P(0,1).
(Ⅰ)求橢圓C的方程; 
(Ⅱ)過點(diǎn)(1,-1)的直線l與橢圓C交于不同的兩點(diǎn)M、N(均異于點(diǎn)P).問直線PM與PN的斜率之和是否是定值,若是,求出這個定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=4x2+2x,則f(sin$\frac{7π}{6}$)等于(  )
A.0B.3-$\sqrt{3}$C.2D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.cos263°cos203°+sin83°sin23°的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a>0時,函數(shù)f(x)=ln2x-ax-b只有一個零點(diǎn),則當(dāng)$\frac{2}{a}$$+\frac{1}{{e}^}$取得最小值時a的值是(  )
A.$\sqrt{e}$B.$\frac{2}{e}$C.$\frac{2\sqrt{e}}{e}$D.$\frac{\sqrt{e}}{e}$

查看答案和解析>>

同步練習(xí)冊答案