A. | 雙曲線的一支 | B. | 橢圓 | ||
C. | 雙曲線的一支或橢圓 | D. | 雙曲線或橢圓 |
分析 兩定圓O1、O2無(wú)公共點(diǎn),它們的位置關(guān)系應(yīng)是外離或內(nèi)含,分類,利用雙曲線、橢圓的定義,即可求得結(jié)論.
解答 解:兩定圓O1、O2無(wú)公共點(diǎn),它們的位置關(guān)系應(yīng)是外離或內(nèi)含.
設(shè)兩定圓O1、O2的半徑分別為r1,r2(r1>r2)圓心O的半徑為R
當(dāng)兩圓外離時(shí),|OO1|=R-r1,|OO2|=R-r2,∴|OO2|-|OO1|=r1-r2,∴圓心O是軌跡是雙曲線的一支;
當(dāng)兩圓內(nèi)含時(shí),|OO1|=r1-R,|OO2|=R+r2,∴|OO2|+|OO1|=r1+r2,∴圓心O是軌跡是橢圓.
故選:C.
點(diǎn)評(píng) 本題考查軌跡方程,考查雙曲線、橢圓的定義,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=-4sin(\frac{π}{8}x-\frac{π}{4})$ | B. | $y=4sin(\frac{π}{8}x-\frac{π}{4})$ | C. | $y=-4sin(\frac{π}{8}x+\frac{π}{4})$ | D. | $y=4sin(\frac{π}{8}x+\frac{π}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在$({-\sqrt{2},0})$處取得最大值 | B. | 在$({0,\sqrt{2}})$處取得最大值 | ||
C. | 在$({\sqrt{2},0})$處取得最大值 | D. | 無(wú)最大值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com