(本小題12分)設(shè)函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求上的最小值;

 

【答案】

 (1)函數(shù)的增區(qū)間為,減區(qū)間為

(2) 上的最小值為

【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的 運用。求解函數(shù)的單調(diào)性以及函數(shù)的最值的綜合運用。

(1)首先分析定義域,然后求解導數(shù),令導數(shù)為零,得到導函數(shù)與x軸 的交點,然后分析導數(shù)大于零或者小于零的解得到結(jié)論。

(2)根據(jù)第一問的結(jié)論,結(jié)合函數(shù)的單調(diào)性,可知函數(shù)在給定區(qū)間的最值問題。

解:(1),

,可得,,

變化時,,的變化情況如下表:

0

1

0

+

0

0

+

極小值

極大值

極小值

函數(shù)的增區(qū)間為,減區(qū)間為

(2)當時,

極小值極大值

所以上的最小值為

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011-2012學年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試理科數(shù)學試卷 題型:解答題

(本小題滿分12分)

已知函的部分圖象如圖所示:

(1)求的值;

(2)設(shè),當時,求函數(shù)的值域.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題分A,B類,滿分12分,任選一類,若兩類都選,以A類記分)

(A類)已知函數(shù)的圖象恒過定點,且點又在函

數(shù)的圖象.

(1)求實數(shù)的值;                (2)解不等式

(3)有兩個不等實根時,求的取值范圍.

(B類)設(shè)是定義在上的函數(shù),對任意,恒有

.

⑴求的值;     ⑵求證:為奇函數(shù);

⑶若函數(shù)上的增函數(shù),已知,求

取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

       已知定理:若“為常數(shù),滿足,則函數(shù)的圖象關(guān)于點中心對稱。”設(shè)函數(shù),定義域為A。

   (1)證明:函數(shù)的圖象關(guān)于點中心對稱;

   (2)當時,求函數(shù)值的取值范圍;

   (3)對于給定的,設(shè)計構(gòu)造過程:,若,構(gòu)造過程將繼續(xù)下去;若,構(gòu)造過程都可以無限進行下去,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

 已知函的部分圖象如圖所示:

(1)求的值;

(2)設(shè),當時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

 已知函的部分圖象如圖所示:

(1)求的值;

(2)設(shè),當時,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案