10.已知三角形ABC外接圓O的半徑為1(O為圓心),且$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|,則$\overrightarrow{CA}$•$\overrightarrow{BC}$等于(  )
A.$-\frac{15}{4}$B.$-\frac{3}{4}$C.$\frac{15}{4}$D.$\frac{3}{4}$

分析 由題意可得三角形是以角A為直角的直角三角形,解直角三角形求出相應(yīng)的邊和角,代入數(shù)量積公式得答案.

解答 解:三角形ABC外接圓O的半徑為1(O為圓心),且$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴O為BC的中點(diǎn),故△ABC是直角三角形,∠A為直角.
又|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|,
∴|$\overrightarrow{AB}$|=$\frac{1}{2}$,|$\overrightarrow{BC}$|=2,
∴|$\overrightarrow{AC}$|=$\frac{\sqrt{15}}{2}$,
∴cosC=$\frac{A{C}^{2}+O{C}^{2}-O{A}^{2}}{2•AC•OC}$=$\frac{\frac{15}{4}}{2×\frac{\sqrt{15}}{2}×1}$=$\frac{\sqrt{15}}{2}$,
∴$\overrightarrow{CA}$•$\overrightarrow{BC}$=-$\overrightarrow{AC}$•$\overrightarrow{BC}$=-$\frac{\sqrt{15}}{2}$×2×$\frac{\sqrt{15}}{2}$=-$\frac{15}{4}$
故選:A.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查直角三角形中的邊角關(guān)系,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.集合M={a|0<2a-1≤5,a∈Z}用列舉法表示為{1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.A,B,C三個(gè)學(xué)生參加了一次考試,A,B的得分均為70分,C的得分均為65分,已知命題p:若及格分低于70分,則A,B,C都沒有及格,在下列四個(gè)命題中,為p的逆否命題的是(  )
A.若及格分不低于70分,則A,B,C都及格
B.若A,B,C都及格,則及格分不低于70分
C.若A,B,C至少有1人及格,則及格分不低于70分
D.若A,B,C至少有1人及格,則  及格分不高70于分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{m{x^2}+1,x≥0}\\{({m^2}-1){2^x},x<0}\end{array}}$在(-∞,+∞)上是具有單調(diào)性,則實(shí)數(shù)m的取值范圍(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|x(x-1)<0,x∈R},B={x|$\frac{1}{2}$<x<2,x∈R},那么集合A∩B=(  )
A.B.$\{x|\frac{1}{2}<x<1,x∈R\}$C.{x|-2<x<2,x∈R}D.{x|-2<x<1,x∈R}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四邊形ABCD為矩形,PA⊥平面ABCD,DE∥PA.
(Ⅰ)求證:BC⊥CE;
(Ⅱ)若直線m?平面PAB,試判斷直線m與平面CDE的位置關(guān)系,并說明理由;
(Ⅲ)若AB=PA=2DE=2,AD=3,求三棱錐E-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3.函數(shù)y=[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用.則[log31]+[log32]+[log33]+…+[log311]的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某公司對(duì)新招聘的員工張某進(jìn)行綜合能力測(cè)試,共設(shè)置了A、B、C三個(gè)測(cè)試項(xiàng)目.假定張某通過項(xiàng)目A的概率為$\frac{1}{2}$,通過項(xiàng)目B、C的概率均為a(0<a<1),且這三個(gè)測(cè)試項(xiàng)目能否通過相互獨(dú)立.
(1)用隨機(jī)變量X表示張某在測(cè)試中通過的項(xiàng)目個(gè)數(shù),求X的概率分布和數(shù)學(xué)期望E(X)(用a表示);
(2)若張某通過一個(gè)項(xiàng)目的概率最大,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知U是全集,A、B是U的兩個(gè)子集,用交、并、補(bǔ)關(guān)系將圖中的陰影部分表示出來B∩(∁UA)

查看答案和解析>>

同步練習(xí)冊(cè)答案