已知直線ax+by=1與圓x2+y2=1相交,則點(diǎn)P(a,b)在(  )
A、圓上B、圓外
C、圓內(nèi)D、以上皆有可能
考點(diǎn):點(diǎn)與圓的位置關(guān)系
專題:直線與圓
分析:先根據(jù)直線和圓的位置關(guān)系得到a,b的關(guān)系式即可得到結(jié)論.
解答: 解:直線ax+by=1與圓x2+y2=1相交,
則圓心到直線的距離d=
1
a2+b2
<1
,
a2+b2
>1,
即點(diǎn)P(a,b)在圓外,
故選:B
點(diǎn)評(píng):本題主要考查直線和圓以及點(diǎn)和圓的位置關(guān)系的判斷,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=4,|
b
|=2,且
a
b
的夾角為120°,求
(1)|
a
+
b
|;
(2)若(
a
b
)⊥(2
a
-3
b
),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i為虛數(shù)單位,則復(fù)數(shù)
3-4i
i
=( 。
A、-4-3iB、-4+3i
C、4+3iD、4-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二階矩陣M對(duì)應(yīng)的變換TM將曲線x2+x-y+1=0變?yōu)榍2y2-x+2=0.求M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-y2=1(a>0)的離心率為2,則該雙曲線的漸近線方程為(  )
A、y=±x
B、y=±3x
C、y=±
3
3
x
D、y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四面體ABCD中,已知
AB
=
b
,
AD
=
a
,
AC
=
c
,
BE
=
1
2
EC
,則
DE
=( 。
A、-
a
+
2
3
b
+
1
3
c
B、
a
+
2
3
b
+
1
3
c
C、
a
-
2
3
b
+
1
3
c
D、
2
3
a
-
b
+
1
3
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(2x+
π
6
).
(1)若將y=f(x)圖象上的所有點(diǎn)向右平移
π
3
個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,寫(xiě)出g(x)的表達(dá)式.
(2)求y=f(x)圖象上所有對(duì)稱點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等邊△ABC的邊長(zhǎng)為
3
,平面內(nèi)一點(diǎn)M滿足
CM
=
3
4
CA
+
1
2
CB
,所以
MA
MB
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量的集合A到A的映射f由f(
x
)=
x
-2(
x
a
a
確定,其中
a
為非零常向量,若映射f滿足f(
x
)•f(
y
)=
x
y
對(duì)任意
x
,
y
∈A恒成立,則|
a
|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案