某人忘記了電話號碼的最后一個數(shù)字,隨意撥號,則撥號不超過3次而接通電話的概率為( 。
A、
9
10
B、
3
10
C、
1
8
D、
1
10
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:根據(jù)古典概率的求解方法得出每次撥對號碼的概率為
1
10
,再運用公式求解.
解答: 解;∵數(shù)值為0,1,2,3,4,5,6,7,8,9,共10個數(shù)字,
∴每次撥對號碼的概率為
1
10
,
∴撥號不超過3次而接通電話的概率為
1
10
+
1
10
+
1
10
=
3
10
,
故選:B.
點評:本題考查了古典概率的求解,屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+
1
ex

(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)若對所有x≤0都有f(x)≥ax+1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)一個幾何體的三視圖如圖所示,其中主視圖和左視圖是全等的正三角形,且該幾何體的表面積為3π,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
(1)奇函數(shù)f(x)在(-∞,0)上增函數(shù),則(0,+∞)上也是增函數(shù);
(2)命題“若x2-3x+2=0,則x=1”的否命題是“若x2-3x+2=0,則x≠1”;
(3)y=x2-2|x|-3的單調(diào)遞增區(qū)間為[1,+∞);
(4)已知函數(shù)f(x)滿足2f(x)=f(
1
x
)+
3
x
,則f(x)的最小值為2
2

其中正確結(jié)論的是
 
(填寫正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,曲線 
x=cosφ
y=sinφ
(φ為參數(shù)),經(jīng)坐標(biāo)變換
x′=ax
y′=by
(a>0,b>0)后所得曲線記為C.A、B是曲線C上兩點,且OA⊥OB.
(1)求曲線C的普通方程;
(2)求證:點O到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
y≥1
y≤2x-1
x+y≤m
,若目標(biāo)函數(shù)z=x-y+1的最小值為0,則m的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x|x|+x3+2在[-2014,2014]上的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2+bx+5滿足條件f(-1)=f(3),則f(2)的值為( 。
A、5B、6
C、8D、與a,b的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)
1
5
(lg32+log416+6lg
1
2
)+
1
5
lg
1
5
;
(2)已知x+x-1=3,求
x3+x-3
x2+x-2
的值.

查看答案和解析>>

同步練習(xí)冊答案