14.執(zhí)行如圖所示的程序框圖,輸出的所有值之和是37.

分析 由已知中的程序語(yǔ)句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出1,3,5,7,9,11,13,15中不是3的倍數(shù)的數(shù),模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運(yùn)行,可知,程序輸出的x是1,3,5,7,9,11,13,15中不是3的倍數(shù)的數(shù),
所以所有輸出值的和1+5+7+11+13=37.
故答案為:37.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)是R上的奇函數(shù),且滿足f(π-x)=f(x),當(dāng)0≤x≤$\frac{π}{2}$時(shí),f(x)=cosx-1,則當(dāng)0≤x≤π時(shí),f(x)的圖象與x軸所圍成圖形的面積為( 。
A.π-2B.2π-4C.3π-6D.4π-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.榫卯(sǔn mǎo)是古代中國(guó)建筑、家具及其它器械的主要結(jié)構(gòu)方式,是在兩個(gè)構(gòu)件上采用凹凸部位相結(jié)合的一種連接方式,凸出部分叫做“榫頭”.某“榫頭”的三視圖及其部分尺寸如圖所示,則該“榫頭”體積等于( 。
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(-1,-2)的直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+tcos{{45}°}}\\{y=-2+tsin{{45}°}}\end{array}}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ•sinθ•tanθ=4m(m>0),直線l與曲線C相交于不同的兩點(diǎn)M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.為了解決低收入家庭的住房問(wèn)題,某城市修建了首批216套住房,已知A,B,C三個(gè)社區(qū)分別有低收入家庭720戶,540戶,360戶,現(xiàn)采用分層抽樣的方法決定各社區(qū)所分配首批經(jīng)濟(jì)住房的戶數(shù),則應(yīng)從C社區(qū)抽取低收入家庭的戶數(shù)為( 。
A.48B.36C.24D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線與橢圓x2+$\frac{{y}^{2}}{2}$=1有公共焦點(diǎn),且雙曲線的離心率為$\sqrt{5}$,則該雙曲線的漸近線方程為(  )
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$C.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.6名教師被隨機(jī)地平均分配到甲、乙、丙三個(gè)不同學(xué)校進(jìn)行調(diào)研,且學(xué)校甲至少有一名男教師的概率是$\frac{3}{5}$.
(Ⅰ)求6名教師中男、女教師各幾人;
(Ⅱ)求學(xué)校乙恰好男、女教師各一人的概率;
(Ⅲ)設(shè)隨機(jī)變量ζ表示在學(xué)校丙的男教師的人數(shù),求ζ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(x,y),$\overrightarrow$=(1,-2),從6張大小相同,分別標(biāo)有號(hào)碼1,2,3,4,5,6的卡片中有放回地抽取兩張,x、y分別表示第一次、第二次抽取的卡片上的號(hào)碼.
(Ⅰ)求滿足$\overrightarrow{a}$•$\overrightarrow$=-1的概率;
(Ⅱ)求滿足$\overrightarrow{a}$•$\overrightarrow$>0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知實(shí)數(shù)m,n滿足$\frac{5+mi}{n-2i}$=4+6i,則在復(fù)平面內(nèi),復(fù)數(shù)z=m+ni所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案