【題目】在直三棱柱ABCA1B1C1中,平面ABC是下底面.MBB1上的點,AB3,BC4,AC5CC17,過三點AM、C1作截面,當截面周長最小時,截面將三棱柱分成的上、下兩部分的體積比為(

A.B.C.D.

【答案】D

【解析】

由題意畫出圖形,可得當截面周長最小時的BM值,再由已知可得AB平面BB1C1C,分別求出截面上下兩部分的體積,作比即可得解.

AB3,BC4,AC5AB2+BC2AC2,ABBC,AB平面BB1C1C,

將側(cè)面BCC1B1折疊到平面ABB1A1內(nèi),如圖,

連接BB1 的交點即為M,由相似可得BM3,

設(shè)四棱錐ABCC1M的體積為V1,則,

三棱柱ABCA1B1C1 的體積,

∴當截面周長最小時,截面將三棱柱分成的上、下兩部分的體積比為

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】天津市某中學為全面貫徹五育并舉,立德樹人的教育方針,促進學生各科平衡發(fā)展,提升學生綜合素養(yǎng).該校教務(wù)處要求各班針對薄弱學科生成立特色學科興趣學習小組”(每位學生只能參加一個小組),以便課間學生進行相互幫扶.已知該校某班語文數(shù)學英語三個興趣小組學生人數(shù)分別為101015.經(jīng)過一段時間的學習,上學期期中考試中,他們的成績有了明顯進步.現(xiàn)采用分層抽樣的方法從該班的語文,數(shù)學,英語三個興趣小組中抽取7人,對期中考試這三科成績及格情況進行調(diào)查.

1)應從語文,數(shù)學,英語三個興趣小組中分別抽取多少人?

2)若抽取的7人中恰好有5人三科成績?nèi)考案,其?/span>2人三科成績不全及格.現(xiàn)從這7人中隨機抽取4人做進一步的調(diào)查.

①記表示隨機抽取4人中,語文,數(shù)學,英語三科成績?nèi)案竦娜藬?shù),求隨機變量的分布列和數(shù)學期望;

②設(shè)為事件抽取的4人中,有人成績不全及格,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“柯西不等式”是由數(shù)學家柯西在研究數(shù)學分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應當稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數(shù)學家彼此獨立地在積分學中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學選修教材4﹣5中給出了二維形式的柯西不等式:a2+b2)(c2+d2ac+bd2當且僅當adbc(即)時等號成立.該不等式在數(shù)學中證明不等式和求函數(shù)最值等方面都有廣泛的應用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時x的值分別為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】干支歷法是上古文明的產(chǎn)物,又稱節(jié)氣歷或中國陽歷,是一部深奧的歷法.它是用60組各不相同的天干地支標記年月日時的歷法.具體的算法如下:先用年份的尾數(shù)查出天干,如20133為癸;再用2013年除以12余數(shù)為9,9為巳.那么2013年就是癸巳年了,

天干

4

5

6

7

8

9

0

1

2

3

地支

4

5

6

7

8

9

10

11

12

1

2

3

2020年高三應屆畢業(yè)生李東是壬午年出生,李東的父親比他大25歲.問李東的父親是哪一年出生(

A.甲子B.乙丑C.丁巳D.丙卯

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和分別為,且,,,其中為常數(shù).

1)若,.

①求數(shù)列的通項公式;

②求數(shù)列的通項公式.

2)若,.求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在極坐標系中曲線C的極坐標方程為

1)求曲線C與極軸所在直線圍成圖形的面積;

2)設(shè)曲線C與曲線ρsinθ1交于AB,求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年第十三屆女排世界杯共12支參賽球隊,比賽賽制釆取單循環(huán)方式,即每支球隊進行11場比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取53勝制):比賽中以3—03—1取勝的球隊積3分,負隊積0分;而在比賽中以3—2取勝的球隊積2分,負隊積1分.9輪過后,積分榜上的前2名分別為中國隊和美國隊,中國隊積26分,美國隊積22分.第10輪中國隊對抗塞爾維亞隊,設(shè)每局比賽中國隊取勝的概率為

1)第10輪比賽中,記中國隊3—1取勝的概率為,求的最大值點

2)以(1)中的作為的值.

i)在第10輪比賽中,中國隊所得積分為,求的分布列;

)已知第10輪美國隊積3分,判斷中國隊能否提前一輪奪得冠軍(第10輪過后,無論最后一輪即第11輪結(jié)果如何,中國隊積分最多)?若能,求出相應的概率;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,DABC中,邊BC的中點,KACABD的外接圓O的交點,EK平行于AB且與圓O交于E,若AD=DE,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F(0,1)為平面上一點,H為直線ly=1上任意一點,過點H作直線l的垂線m,設(shè)線段FH的中垂線與直線m交于點P,記點P的軌跡為Γ.

1)求軌跡Γ的方程;

2)過點F作互相垂直的直線ABCD,其中直線AB與軌跡Γ交于點AB,直線CD與軌跡Γ交于點CD,設(shè)點MN分別是ABCD的中點.

①問直線MN是否恒過定點,如果經(jīng)過定點,求出該定點,否則說明理由;

②求△FMN的面積的最小值.

查看答案和解析>>

同步練習冊答案