【題目】已知關(guān)于x的不等式|x+a|<b的解集為{x|2<x<4}.
(1)求實數(shù)a,b的值;
(2)求證: .
【答案】
(1)解:由|x+a|<b,得﹣b﹣a<x<b﹣a,
則 ,解得a=﹣3,b=1.
(2)由柯西不等式有 ,
所以 ,當且僅當 ,即t=1時等號成立.
又 ,所以 ,
當且僅當t=4時等號成立,
綜上, .
【解析】(1)取絕對值解出不等式,列方程得出a,b的值;(2)根據(jù)柯西不等式和基本不等式證明.
【考點精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號,以及對不等式的證明的理解,了解不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學歸納法等.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與拋物線C的交點為Q,且|QF|=2|PQ|,過F的直線l與拋物線C相交于A,B兩點.
(1)求C的方程;
(2)設(shè)AB的垂直平分線l'與C相交于M,N兩點,試判斷A,M,B,N四點是否在同一個圓上?若在,求出l的方程;若不在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型民企為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該民企2016年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長12%,則該民企全年投入的研發(fā)資金開始超過200萬元的年份是(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)( )
A.2017年
B.2018年
C.2019年
D.2020年
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AB是半徑為2的半球O的直徑,P,D為球面上的兩點且∠DAB=∠PAB=60°, .
(1)求證:平面PAB⊥平面DAB;
(2)求二面角B﹣AP﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 的圖象上有且僅有四個不同的點關(guān)于直線y=﹣1的對稱點在y=kx﹣1的圖象上,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ2﹣4ρsinθ+2=0.
(Ⅰ)把圓C的極坐標方程化為直角坐標方程;
(Ⅱ)將直線l向右平移h個單位,所得直線l′與圓C相切,求h.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,平面PAB⊥平面ABC,△PAB是等邊三角形,AC⊥BC,且AC=BC=2,O、D分別是AB,PB的中點.
(1)求證:PA∥平面COD;
(2)求三棱錐P﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)滿足xf′(x)+f(x)= ,f(e)= ,則函數(shù)f(x)( )
A.在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減
B.在(0,+∞)上單調(diào)遞增
C.在(0,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增
D.在(0,+∞)上單調(diào)遞減
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com