(本小題滿分14分)如圖4,在三棱柱中,底面是邊長為2的正三角形,側(cè)棱長為3,且側(cè)棱,點的中點.

(1)求證:;
(2)求證:平面

(1)因為三棱柱是正三棱柱,所以平面,
平面,所以,……………………………………… 2分
又點是棱的中點,且為正三角形,所以,
因為,所以平面,………………………………4分
又因為平面,所以.………………………………7分]
(2)連接于點,再連接.………9分

因為四邊形為矩形,
所以的中點,………………10分
又因為的中點,
所以.………………………12分
平面,平面,
所以平面.………………………………………………14

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形中(圖1),的中點,,將(圖1)沿直線折起,使二面角(如圖2)
(1)求證:平面
(2)求二面角A—DC—B的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求證:AD⊥平面SBC;
(II)試在SB上找一點E,使得BC//平面ADE,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD, E、F分別是PC、PD的中點,求證:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

敘述并證明直線與平面垂直的判定定理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(本小題滿分13分)如圖,平面⊥平面,,,

直線與直線所成的角為,又。     
(1)求證:
(2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,平面,且,點是棱的中點,點在棱上移動.
(Ⅰ)當(dāng)點的中點時,試判斷直線與平面的關(guān)系,并說明理由;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線段PD上存在點E使得BE⊥CE,求線段AD的取值范圍,并求當(dāng)線段PD上有且只
有一個點E使得BE⊥CE時,二面角E—BC—A正切值的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在空間直角坐標(biāo)系中,定義:平面α的一般方程為:Ax+By+Cz+D=0(A,B,C,D∈R,且A,B,C不同時為零),點到平面α的距離為:,則在底面邊長與高都為2的正四棱錐中,底面中心O到側(cè)面的距離等于(    )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案