若存在實(shí)數(shù)x使|x-m|+|x+1|≤2成立,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)絕對(duì)值的意義可得|x-m|+|x+1|的最小值為|m+1|,再由|m+1|≤2,求得實(shí)數(shù)m的取值范圍.
解答: 解:根據(jù)絕對(duì)值得意義,|x-m|+|x+1|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到m、-1對(duì)應(yīng)點(diǎn)的距離之和,
它的最小值為|m+1|.
由題意可得|m+1|≤2,即-2≤m+1≤2,解得-3≤m≤1,
故答案為:[-3,1].
點(diǎn)評(píng):本題主要考查絕對(duì)值的意義,絕對(duì)值不等式的解法,關(guān)鍵是去掉絕對(duì)值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,-1),B(3,1),直線l過點(diǎn)C(0,
5
2
),且與AB平行,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:|x-1|+|x-3|>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,每個(gè)側(cè)面均為邊長(zhǎng)為2的正方形,D為底邊AB的中點(diǎn),E為側(cè)棱CC1的中點(diǎn).
(Ⅰ)求證:CD∥平面A1EB;
(Ⅱ)求證:AB1⊥平面A1EB;
(Ⅲ)若F為A1B1的中點(diǎn),求過F,D,B,C點(diǎn)的球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三實(shí)驗(yàn)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如下,據(jù)此解答如下問題:

(Ⅰ)求考試分?jǐn)?shù)[110,120)之間的人數(shù),并依據(jù)莖葉圖指出該組數(shù)據(jù)的中位數(shù)是多少?
(Ⅱ)若要從分?jǐn)?shù)在[110,130)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份的分?jǐn)?shù)在[110,120)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,∠ABC=60°,PD=1,BD=8,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z=
3
-i(i是虛數(shù)單位),則z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
12
1
=1,
12+22
1+2
=
5
3
,
12+22+32
1+2+3
=
7
3
12+22+32+42
1+2+3+4
=
9
3
,…,則第n個(gè)等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線C:
x=2cosθ
y=
3
sinθ
(θ為參數(shù))和定點(diǎn)A(0,
3
),F(xiàn)1,F(xiàn)2是此圓錐曲線的左、右焦點(diǎn).
(Ⅰ)以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程;
(Ⅱ)經(jīng)過點(diǎn)F1,且與直線AF2垂直的直線l交此圓錐曲線于M、N兩點(diǎn),求||MF1|-|NF1||的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案