【題目】已知向量函數(shù)的最小正周期為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,角的對(duì)邊分別是,且滿足,求的面積.
【答案】(1)(2)
【解析】
(1)首先利用已知條件利用向量的坐標(biāo)和向量的數(shù)量積求出函數(shù)的關(guān)系式,進(jìn)一步通過三角函數(shù)關(guān)系式的恒等變換,把函數(shù)變形成正弦型函數(shù),進(jìn)一步利用函數(shù)的周期求出函數(shù)的解析式,最后求出函數(shù)的單調(diào)區(qū)間.
(2)利用(1)的結(jié)論,進(jìn)一步利用余弦定理和三角形的面積公式求出結(jié)果.
(1)向量(cosωx,sinωx),(cosωx,cosωx)
則:f(x)
由最小正周期是π及ω>0
得到:
解得:ω=1
所以:f(x)
令:
解得:
所以函數(shù)的單調(diào)遞增區(qū)間為:[](k∈Z)
(2)由已知f()得:
解得:
由于B是三角形的內(nèi)角,
所以:
由于:a+c=8,b=7,
所以:b2=a2+c2﹣2accosB
=(a+c)2﹣3ac
所以:ac=5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在直線上,且圓C與x軸交于兩點(diǎn),.
(1)求圓C的方程;
(2)已知圓M:,設(shè)為坐標(biāo)平面上一點(diǎn),且滿足:存在過點(diǎn)且互相垂直的直線和有無數(shù)對(duì),它們分別與圓C和圓M相交,且圓心C到直線的距離是圓心M到直線的距離的2倍,試求所有滿足條件的點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù),都有成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式恒成立;:當(dāng)時(shí),是單調(diào)函數(shù).如果滿足成立的的集合記為,滿足成立的的集合記為,求(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
Ⅰ當(dāng)時(shí),恒成立,求a的取值范圍;
Ⅱ設(shè)是定義在上的函數(shù),在內(nèi)任取個(gè)數(shù),,,,,設(shè),令,,如果存在一個(gè)常數(shù),使得恒成立,則稱函數(shù)在區(qū)間上的具有性質(zhì)P.試判斷函數(shù)在區(qū)間上是否具有性質(zhì)P?若具有性質(zhì)P,請(qǐng)求出M的最小值;若不具有性質(zhì)P,請(qǐng)說明理由.注:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a,b,N都是正數(shù),a≠1,b≠1,證明對(duì)數(shù)換底公式:logaN=;
(2)寫出對(duì)數(shù)換底公式的一個(gè)性質(zhì)(不用證明),并舉例應(yīng)用這個(gè)性質(zhì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售某種活蝦,根據(jù)以往的銷售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進(jìn)行分組,得到如圖所示的頻率分布直方圖.
這種活蝦經(jīng)銷商進(jìn)價(jià)成本為每公斤15元,當(dāng)天進(jìn)貨當(dāng)天以每公斤20元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某水產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種活蝦,設(shè)當(dāng)天利潤為Y元.
(1)求Y關(guān)于x的函數(shù)關(guān)系式;
(2)結(jié)合直方圖估計(jì)利潤Y不小于300元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線y=1+與直線y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A. (,+∞)B. (,]C. (0,)D. (,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在處取得極值,求的值;
(2)設(shè),試討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),若存在正實(shí)數(shù)滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,沿AB將△ADC翻折成.設(shè)二面角的平面角為,直線與直線BC所成角為,直線與平面ABC所成角為,當(dāng)為銳角時(shí),有
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com