已知f(x)=
ex-1
ex+1
,若f(m)=
1
2
,則f(-m)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿(mǎn)足f(-x)=-f(x),可得函數(shù)f(x)為奇函數(shù),再由f(-m)=-f(m),得出結(jié)論.
解答: 解:由于函數(shù)f(x)=
ex-1
ex+1
的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱(chēng),
且滿(mǎn)足f(-x)=
e-x-1
e-x+1
=
1-ex
1+ex
=-f(x),
故函數(shù)f(x)為奇函數(shù),
故有f(-m)=-f(m)=-
1
2
,
故答案為:-
1
2
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性的判斷、函數(shù)奇偶性的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體的一側(cè)面與投影面平行,則該正方體有
 
個(gè)面的正投影是線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若s5=4a4-1且a4是a1與a13的等比中項(xiàng)
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=
1
Sn
,Tn是數(shù)列{bn}的前n項(xiàng)和,且Tn≤m對(duì)n∈N*都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sin
x
2
cos
x
2
-2sin2
x
2
+1.
(Ⅰ)若f(a)=
6
5
,求cos(
π
3
-α)
的值;
(Ⅱ)把函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得圖象向左平移m(m>0)個(gè)單位,得到函數(shù)g(x)的圖象.若函數(shù)g(x)為偶函數(shù),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出下面數(shù)列{an}的前5項(xiàng):a1=
1
2
,an=4an-1+1(n>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=
sinx
-
-tanx
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,已知(2a-c)cosB=bcosC.
(Ⅰ)求角B;
(Ⅱ)若a=2
3
,A=
π
4
,求△ABC的面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓x2+y2+2x+2y+k=0和定點(diǎn)P(1,-1),若過(guò)點(diǎn)P的圓的切線有兩條,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)無(wú)蓋器皿的三視圖,正視圖、側(cè)視圖和俯視圖   中的正方形邊長(zhǎng)為2,正視圖、側(cè)視圖中的虛線都是半圓,則該器皿的表面積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案