定義:若存在常數(shù),使得對定義域內(nèi)的任意兩個(gè),均有 成立,則稱函數(shù)在定義域上滿足利普希茨條件.若函數(shù)滿足利普希茨條件,則常數(shù)的最小值為()
A.4 B.3 C.1 D.
D

試題分析:由已知中中利普希茨條件的定義,若函數(shù)滿足利普希茨條件,所以存在常數(shù)k,使得對定義域[1,+∞)內(nèi)的任意兩個(gè),均有成立, 不妨設(shè),則. 而0<,所以k的最小值為 .故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)常數(shù))滿足.
(1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;
(2)若在區(qū)間上單調(diào)遞減,求的最小值;
(3)在(2)的條件下,當(dāng)取最小值時(shí),證明:恰有一個(gè)零點(diǎn)且存在遞增的正整數(shù)數(shù)列,使得成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx+a,其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
(2)求證:對于任意的n∈N*,且n>1時(shí),都有l(wèi)nn>++…+恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在函數(shù)y=|x|(x∈[-1,1])的圖象上有一點(diǎn)P(t,|t|),此函數(shù)與x軸、直線x=-1及x=t圍成圖形(如圖陰影部分)的面積為S,則S與t的函數(shù)關(guān)系圖象可表示為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•山東)曲線y=x3+11在點(diǎn)P(1,12)處的切線與y軸交點(diǎn)的縱坐標(biāo)是( 。
A.﹣9B.﹣3C.9D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)時(shí)取得最大值,在時(shí)取得最小值,則實(shí)數(shù)的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2013•湖北)已知函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(﹣∞,0)B.(0,C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的定義域?yàn)镽,若存在常數(shù)M>0,使對 一切實(shí)數(shù)x均成 立,則稱為“倍約束函數(shù)”,現(xiàn)給出下列函數(shù):①:②:③;④  ⑤是定義在實(shí)數(shù)集R上的奇函數(shù),且
對一切均有,其中是“倍約束函數(shù)”的有(    )
A.1個(gè) B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案