在函數(shù)y=logax(a>1)的圖象上有A、B、C三點,橫坐標分別為m,m+2,m+4,其中m>1.
(1)求△ABC的面積S=f(m)的表達式;
(2)求S=f(m)的值域.
分析:(1)分別由A、B、C三點向x軸作垂線,交點為D,E,F(xiàn),根據(jù)S△ABC=SABED+SBCFE-SACFD和D,E,F(xiàn)的坐標,進而得出函數(shù)f(m)的表達式.
(2)由(1)中得S=f(m)=loga
(m+2)2
m2+4m
      (m>1)
,先根據(jù) m>1,推斷t=m2+4m為增函數(shù),進而推斷函數(shù)f(m)為減函數(shù),根據(jù)m的范圍,求得函數(shù)的值域.
解答:解:(1)解:分別由A、B、C三點向x軸作垂線,交點為D,E,F(xiàn),如圖:
S△ABC=SABED+SBCFE-SACFD
=
1
2
•2•{[logam+loga(m+2)]+[loga(m+2)+loga(m+4)]}-2•[logam+loga(m+4)]
=2loga(m+2)-logam-loga(m+4)
=loga
(m+2)2
m(m+4)
    (m>1)
S=f(m)=loga
(m+2)2
m2+4m
       (m>1)

(2)∵s=f(m)=loga(1+
4
m2+4m
)
  (m>1)
m>1時,t=m2+4m為增函數(shù),a>1,
∴S=f(m)在(1,+∞)上為減函數(shù),
1<1+
4
m2+4m
<1+
4
5
=
9
5

0<S<loga
9
5

∴S=f(m)的值域為(0,loga
9
5
)
點評:本題主要考查了對數(shù)函數(shù)的圖象和性質(zhì),建立函數(shù)模型,利用函數(shù)單調(diào)性求函數(shù)的值域和最值等問題,復(fù)合函數(shù)單調(diào)性問題,屬中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,在函數(shù)y=logax(x≥1)的圖象上有A、B、C三點,它們的橫坐標分別為t、t+2、t+4.
(1)若△ABC的面積為S,求S=f(t);
(2)判斷S=f(t)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在函數(shù)y=logax(a>1,x>1)的圖象有A、B、C三點,橫坐標分別為m,m+2,m+4.
(1)若△ABC面積為S,求S=f(m);
(2)求S=f(m)的值域;
(3)確定S=f(m)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于下列命題:
①若sinα<0,則角α的終邊在第三、四象限;
②若點P(2,4)在函數(shù)y=ax(a>0且a≠1)的圖象上,則點Q(4,2)必在函數(shù)y=logax(a>0且a≠1)的圖象上;
③若角α與角β的終邊成一條直線,則tanα=tanβ;
④冪函數(shù)的圖象必過點(1,1)與(0,0).
其中所有正確命題的序號是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在函數(shù)y=logax(a>1,x>1)的圖象有A、B、C三點,橫坐標分別為m,m+2,m+4.
(1)若△ABC面積為S,求S=f(m);
(2)求S=f(m)的值域;
(3)確定S=f(m)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案