下列結(jié)論正確的是( 。
A、命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4=0”
B、“x=4”是“x2-3x-4=0”的充分不必要條件
C、已知命題p“若m>0,則方程x2+x-m=0有實根”,則命題p的否定¬p為真命題
D、命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2=0,則m≠0或n≠0”
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:A:寫出命題“若x2-3x-4=0,則x=4”的逆否命題,可判斷A的真假;
B:利用充分必要條件的概念可判斷“x=4”是“x2-3x-4=0”的充分不必要條件,可判斷B正確;
C:m>0時,△=1+4m>0,方程x2+x-m=0有實根,可判斷命題p正確,從而可知命題p的否定¬p為假命題,可判斷C錯誤;
D:寫出命題“若m2+n2=0,則m=0且n=0”的否命題為“若m2+n2≠0則m≠0或n≠0”,可判斷D錯誤.
解答: 解:A:命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”,故A錯誤;
B:“x=4”⇒“x2-3x-4=0”,充分性成立;反之,“x2-3x-4=0”⇒“x=4或x=-1”,必要性不成立,故B正確;
C:因為,m>0時,△=1+4m>0,故方程x2+x-m=0有實根,即命題p正確,則命題p的否定¬p為假命題,故C錯誤;
D:命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”,故D錯誤.
故選:B.
點評:本題考查命題的真假判斷與應(yīng)用,著重考查四種命題之間的關(guān)系及其真假判斷,考查充分必要條件的理解與應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

①若f(x+1)=2x2+1,求f(x).
②已知f(x)是二次函數(shù),若f(0)=0,且 f(x+1)-f(x)=x+1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos4α-sin4α=
2
3
,α∈(0,
π
2
),則cos(2α+
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|-1≤x<2},N={x|x-k≤0},若M∩N=M,則k的取值范圍( 。
A、(-1,2)
B、[2,+∞)
C、(2,+∞)
D、[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M是雙曲線
x2
40
-
y2
9
=1上的一點,F(xiàn)1、F2是雙曲線的兩個焦點,∠F1MF2=90°,求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對函數(shù)f(x),若對任意a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“槑槑函數(shù)”,已知f(x)=
ex+a
ex+1
是“槑槑函數(shù)”,則實數(shù)a的取值范圍為( 。
A、[0,+∞)
B、[
1
2
,2]
C、[1,2]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
)+
3
2
(x∈R).
(1)求f(x)的最小正周期及區(qū)間[0,π]上的單調(diào)遞減區(qū)間;
(2)若函數(shù)y=f(x)的圖象向右平移
π
4
個單位,再向上平移
3
2
個單位,得到函數(shù)y=g(x)的圖象,求y=g(x)在[0,
π
4
]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1=1+i,z2=2+bi,其中i為虛數(shù)單位,若z1•z2為實數(shù),則實數(shù)b=(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M>0,N>0,log4M=log6N=log9(M+N),則
N
M
的值為( 。
A、
5
-1
2
B、
5
+1
2
C、
5
±1
2
D、
3
+1
2

查看答案和解析>>

同步練習冊答案