12.不等式x>$\frac{1}{x}$的解集為( 。
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,1)

分析 分x>0或x<0兩種情況討論即可求出解集

解答 解:當x>0時,不等式等價于x2>1,解得x>1,
當x<0時,不等式等價于x2<1,解得-1<x<0,
故不等式x>$\frac{1}{x}$的解集為(-1,0)∪(1,+∞)
故選:A.

點評 本題主要考查分式不等式的解法,體現(xiàn)了等價轉(zhuǎn)化和分類討論的數(shù)學思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知等差數(shù)列{an}中,a3=7,a6=16,則a9=25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)y=f(x)在R上為奇函數(shù),且當x≥0時,f(x)=x2-2x,則f(-3)=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,如圖描述了甲、乙、丙三輛汽車在不同速度下燃油效率情況,下列敘述中正確的是( 。
A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油
D.甲車以80千米/小時的速度行駛1小時,消耗10升汽油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2x-$\frac{a}{x}$,且f($\frac{1}{2}$)=3.
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設P={x|x≤1},Q={x|-1≤x≤2},那么P∩Q=( 。
A.{x|-1<x<1}B.{x|-1≤x<2}C.{x|1≤x<2}D.{x|-1≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=logax(a>0且a≠1),若f(9)=2,則實數(shù)a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在數(shù)列{an}中,a1=-$\frac{1}{4}$,且an=1-$\frac{1}{{{a_{n-1}}}}$(n>1),則a2016的值$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-ax-5,x≤1}\\{\frac{a+1}{x},x>1}\end{array}\right.$是R上的增函數(shù),則a的取值范圍是[-$\frac{7}{2}$,-2].

查看答案和解析>>

同步練習冊答案