若直線x+y+m=0對任意的m∈R都不是曲線f(x)=x3-3ax(x∈R)的切線,則a的取值范圍是( 。
A.a(chǎn)
1
3
B.a≤
1
3
C.a>
1
3
D.a≥
1
3
直線x+y+m=0的斜率為-1.
函數(shù)導數(shù)為f'(x)=3x2-3a≥-3a,
因為直線x+y+m=0對任意的m∈R都不是曲線f(x)=x3-3ax(x∈R)的切線,
所以-3a>-1,解得a
1
3

故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=x3+bx2+cx,其導函數(shù)y=f′(x)的圖象經(jīng)過點(1,0),(2,0),如圖所示.則下列說法中不正確的編號是______.(寫出所有不正確說法的編號)
(1)當x=
3
2
時函數(shù)取得極小值;
(2)f(x)有兩個極值點;
(3)c=6;
(4)當x=1時函數(shù)取得極大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)a 為常數(shù),求函數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

問常數(shù)為何值時,函數(shù)處有極大值,在處有極小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln(1+x2)+ax(a≤0).
(1)若f(x)在x=0處取得極值,求a的值;
(2)討論f(x)的單調(diào)性;
(3)證明:(1+
1
4
)(1+
1
16
)…(1+
1
4n
)<e1-
1
2n
(n∈N*,e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=f(x)的導數(shù)y=f′(x)的圖象如圖所示,下列說法正確的是(  )
A.函數(shù)f(x)在x=x1處取得極小值
B.函數(shù)f(x)在x=x2處取得極小值
C.函數(shù)f(x)在x=x3處取得極小值
D.函數(shù)f(x)在x=x3處取得極大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線ax-by-2=0與曲線y=x3-lnx在點p(1,1)處的切線互相垂直,則
a
b
為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3x-1,
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=m與y=f(x)的圖象有三個不同的交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線y=
1
3
x3在x=x0處的切線L經(jīng)過點P(2,
8
3
),求切線L的方程.

查看答案和解析>>

同步練習冊答案