(1)由“若a,b,c∈R則(ab)c=a(bc)”類比“若a,b,c為三個向量則•c=a•”
(2)在數(shù)列{an} 中,a1=0,an+1=2an+2猜想an=2n-2
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積”
(4)若M (-2,0),N (2,0),則以MN為斜邊的直角三角形直角頂點P的軌跡方程是x2+y2=4
上述四個推理中,得出的結論正確的是    (寫出所有正確結論的序號)
【答案】分析:向量不符合乘法結合律,通過配湊做出數(shù)列的通項,四面體的任意三個面的面積之和大于第四面的面積,當給x賦值1時,可以得到各項的系數(shù)之和,但是不同的符號不正確.
解答:解:∵向量不符合乘法結合律,
的夾角為A,的夾角為B,則
表示與平行的向量,
•()表示與平行的向量,
不一定平行,
不一定成立,
故(1)不正確,
∵an+1=2an+2,
∴2+an+1=2(an+2),
∴{an+2}是一個等比數(shù)列,
∴an=2n-2,故(2)正確,
根據(jù)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中
“四面體的任意三個面的面積之和大于第四面的面積,(3)正確.
當給x賦值1時,可以得到各項的系數(shù)之和,但是不同的符號不正確,故(4)不正確,
故答案為:(2)(3).
點評:本題考查類比推理和歸納推理,本題解題的關鍵是正確理解類比和歸納的含義,注意本題所包含的四個命題都要正確解出才能做對本題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=|lgx|,a,b為實數(shù),且0<a<b.
(1)求方程f(x)=1的解;
(2)若a,b滿足f(a)=f(b)=2f(
a+b
2
)
,求證:①a•b=1;②
a+b
2
>1

(3)在(2)的條件下,求證:由關系式f(b)=2f(
a+b
2
)
所得到的關于b的方程h(b)=0,存在b0∈(3,4),使h(b0)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)由“若a,b,c∈R,則(ab)c=a(bc)”類比“若
a
b
,
c
為三個向量,則(
a
b
)•
c
 =
a
•(
b
c
)
”;
(2)在數(shù)列{an}中,a1=0,an+1=2an+2,猜想an=2n-2;
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積”;
(4)若f(x)=2cos2x+2sinxcosx則f(
π
4
)=
2
+1

上述四個推理中,得出的結論正確的是
(2)(3)
(2)(3)
.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•徐匯區(qū)三模)定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線l與兩個“相似橢圓”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點A,B和點C,D,證明:|AC|=|BD|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在舒城中學第九屆校園文化節(jié)上共有7位學生(1至7號)以歌唱節(jié)目參賽,由500名觀眾現(xiàn)場投票選出最喜愛歌手.根據(jù)年齡將觀眾分為五組,各組的人數(shù)如下:
組別 A B C D E
人數(shù) 100 50 150 50 150
(1)為了調(diào)查觀眾對7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干觀眾,其中從A組抽取了6人,請將其余各組抽取的人數(shù)填入下表.
組別 A B C D E
人數(shù) 100 50 150 50 150
抽取人數(shù) 6
(2)在(1)中,若A,B兩組被抽到的觀眾中各有2人支持1號歌手,現(xiàn)從這兩組被抽到的評委中分別任選1人,求這2人都支持1號歌手的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省高三10月月考理科數(shù)學試卷(解析版) 題型:選擇題

 甲乙二人玩猜數(shù)字游戲,先由甲任想一數(shù)字,記為a,再由乙猜甲剛才想的數(shù)字,把乙猜出的數(shù)字記為b,且a,b∈{1,2,3},若|a-b| ≤ 1,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個人玩這個游戲,則他們“心有靈犀”的概率為

A.                B.              C.                  D.

 

查看答案和解析>>

同步練習冊答案