12.已知a=20.1,$b={({\frac{1}{2}})^{-0.4}}$,c=2log72,則a,b,c的大小關(guān)系為(  )
A.c<a<bB.c<b<aC.b<a<cD.b<c<a

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:$b={({\frac{1}{2}})^{-0.4}}$=20.4>20.1=a>1,
c=2log72=log74<1,
故選:A.

點(diǎn)評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x,y滿足$\left\{\begin{array}{l}{y≥x}&{\;}\\{x+y≤2}&{\;}\\{x≥a}&{\;}\end{array}\right.$,且z=2x-y的最大值是最小值的-2倍,則a=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中(單位長度相同),曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于A、B兩點(diǎn),求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知{an}是公差不為0的等差數(shù)列,Sn是其前n項(xiàng)和,若a2a3=a4a5,S4=27,則a1的值是$\frac{135}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某樂隊(duì)參加一戶外音樂節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機(jī)選擇4首進(jìn)行演唱.
(1)求該樂隊(duì)至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊(duì)的互動指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀眾與樂隊(duì)的互動指數(shù)為2a,求觀眾與樂隊(duì)的互動指數(shù)之和X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)計(jì)算${({\frac{1}{8}})^{-\frac{1}{3}}}+{({lg5})^0}+lg5+lg2$
(2)已知sinα=2cosα,求$\frac{2sinα-3cosα}{4sinα-9cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知{an}是公差不為0 的等差數(shù)列,Sn是其前n項(xiàng)和,若a2a3=a4a5,S9=1,則a1的值是$-\frac{5}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$y=cos(2x-\frac{π}{4})$的對稱中心為($\frac{1}{2}kπ-\frac{π}{4},0$)(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c,且accosB-bccosA=3b2
(1)求$\frac{sinA}{sinB}$的值;
(2)若角C為銳角,c=$\sqrt{11}$,sinC=$\frac{2\sqrt{2}}{3}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案